scholarly journals In vitro Comparative Dissolution Studies of Different Propranolol Generic Tablets Available in Bangladesh

2021 ◽  
Vol 11 (6-S) ◽  
pp. 86-91
Author(s):  
Madhabi Lata Shuma ◽  
Bishyajit Kumar Biswas ◽  
Sheikh Zahir Raihan ◽  
Shimul Halder

The present study focused to assess in vitro dissolution profiles of four different products of propranolol 10 mg Tablets (Randomly coded as PRP1-PRP4) available in Bangladesh comparing with the reference brand (coded as REF). Propranolol is a competitive non selective beta-adrenergic receptor antagonist used to amend or restore normal heart rhythm in cardiovascular diseases. An in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method at 75 rpm with 500 mL of 0.1N HCl dissolution media at 37.0± 0.5 0C. All the tested locally manufactured propranolol products; PRP1, PRP2, PRP3, PRP4 showed compatible dissolution (87%, 86%, 87%, and 80%, respectively) pattern (dissolution criterion Q=80% in 30 minutes) compared with the reference brand (88% dissolution in 30 minutes). The dissolution behavior was estimated with the reference brand using a model dependent and model-independent approach (f2>50, f1 < 15).  A mechanistic mathematical release kinetics was also evaluated. The best-fit kinetic model was Hixon-Crowell release kinetics for reference brand and PRP1; and first order release kinetics was predominant for PRP2, PRP3 and PRP4. Keywords: propranolol, dissolution, similarity factor, difference factor, dissolution kinetics

Author(s):  
Madhabi Lata Shuma ◽  
Shimul Halder

The objective of the present study was to compare the in vitro equivalence of different orally disintegrating tablets (ODT) of Desloratadine (DES) available in Bangladesh pharmaceutical market with the reference brand. The in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method and a comparative study were also carried out with the reference brand. Other pharmacopoeial and non-pharmacopoeial quality assessment parameters including hardness, friability, water absorption ratio, and disintegration time etc. were also evaluated. From the results of the dissolution profile of the commercially available products, it found majority of the products didn’t exhibited compendial requirements in dissolution behavior to the reference brand with model-independent approach ( f2 > 50, f1 < 15) and showed statistically significant differences. Additionally, the data of different physical quality parameters revealed that all commercial products complied with the official specifications. From these findings, it could be suggested that the DES-ODT formulations’ available in the Bangladesh market could be prescribed; however additional experiments might require to clarify the interchangeability among the products.


1970 ◽  
Vol 7 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Md Golam Azam ◽  
Syed Shabbir Haider

Ten brands of commercial paracetamol suspensions were investigated for their dissolution characteristics in 0.1 N HCl at a speed of 25 rpm using USP dissolution test apparatus II (Paddle method). It was observed that differences exist among the rate of paracetamol dissolution from the samples, particularly at the early stages. For nine of the brands, paracetamol dissolution varied between 72% and 100% at 15 minutes. One of the samples showed a very unsatisfactory rate and extent of drug dissolution as only 39% and 52% paracetamol was released after 15 and 30 minutes respectively. The effect of two commonly used suspending agents, CMC-Na and Avicel, on the release of paracetamol was studied using four laboratory-made suspensions. Retarded drug dissolution was observed which was related to the concentration of the suspending agents. Drug release kinetics followed first order as well Higuchi models. Viscosity of the samples and initial drug release was found to be inversely correlated (R2=0.9081 at 3 minutes) which faded away with the lapse of time. Key words: Paracetamol suspension, in vitro dissolution, suspending agents   DOI = 10.3329/dujps.v7i1.1218 Dhaka Univ. J. Pharm. Sci. 7(1): 53-58, 2008 (June)


Author(s):  
Umamaheswara G. ◽  
Anudeep D.

Fluvastatin sodium is a novel compound used as cholesterol lowering agent which acts through the inhibition of 3- hydroxyl-3- methyl glutaryl- coenzyme A (HMG-Co A) reductase. It has short biological half life (1-3h) in humans required a dosing frequency of 20 to 40mg twice a day. Due to its short variable biological half life it has been developed to a sustained gastroretentive system with a natural and synthetic polymer and to study how far the natural mucilage improves the sustained activity. Floating tablets were prepared by direct compression method using in combination of natural mucilage and synthetic polymer. Prior to the preparation of tablets the physical mixtures were subjected to FT IR studies and pre compression parameters. After preparation of tablets they were subjected to various tests like swollen index, drug content, In vitro dissolution and release kinetics with pcp disso software etc. The tablets prepared by direct compression shown good in thickness, hardness and uniformity in drug content, the prepared tablets floated more than 12h except FS1 and FS2 shows 9 and 11h. Swollen index studies shows with increase in concentration of polymer the swelling increases the diffusion path length by which the drug molecule may have to travel and cause lag time. In vitro results shows that on increasing the amount of hibiscus polymer the sustain activity is increased because of its integrity and forms a thick swollen mass and reduces the erosion property of the HypromelloseK100M, kinetic studies shows that FS 1, FS2, FS3 followed the Korsmeyer peppas model and the rest FS 4, FS 5, FS6 follows the zero order respectively. Based on n value indicating that the drug release followed super case II transport mechanism due to the erosion of the polymer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Author(s):  
Mahima Singh ◽  
Sriramakamal Jonnalagadda

AbstractThis study evaluates the suitability of 3D printed biodegradable mats to load and deliver the topical antibiotic, neomycin, for up to 3 weeks in vitro. A 3D printer equipped with a hot melt extruder was used to print bandage-like wound coverings with porous sizes appropriate for cellular attachment and viability. The semicrystalline polyester, poly-l-lactic acid (PLLA) was used as the base polymer, coated (post-printing) with polyethylene glycols (PEGs) of MWs 400 Da, 6 kDa, or 20 kDa to enable manipulation of physicochemical and biological properties to suit intended applications. The mats were further loaded with a topical antibiotic (neomycin sulfate), and cumulative drug-release monitored for 3 weeks in vitro. Microscopic imaging as well as Scanning Electron Microscopy (SEM) studies showed pore dimensions of 100 × 400 µm. These pore dimensions were achieved without compromising mechanical strength; because of the “tough” individual fibers constituting the mat (Young’s Moduli of 50 ± 20 MPa and Elastic Elongation of 10 ± 5%). The in vitro dissolution study showed first-order release kinetics for neomycin during the first 20 h, followed by diffusion-controlled (Fickian) release for the remaining duration of the study. The release of neomycin suggested that the ability to load neomycin on to PLLA mats increases threefold, as the MW of the applied PEG coating is lowered from 20 kDa to 400 Da. Overall, this study demonstrates a successful approach to using a 3D printer to prepare porous degradable mats for antibiotic delivery with potential applications to dermal regeneration and tissue engineering.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 215 ◽  
Author(s):  
Marcelo Dutra Duque ◽  
Daniela Amaral Silva ◽  
Michele Georges Issa ◽  
Valentina Porta ◽  
Raimar Löbenberg ◽  
...  

A biowaiver is accepted by the Brazilian Health Surveillance Agency (ANVISA) for immediate-release solid oral products containing Biopharmaceutics Classification System (BCS) class I drugs showing rapid drug dissolution. This study aimed to simulate plasma concentrations of fluconazole capsules with different dissolution profiles and run population simulation to evaluate their bioequivalence. The dissolution profiles of two batches of the reference product Zoltec® 150 mg capsules, A1 and A2, and two batches of other products (B1 and B2; C1 and C2), as well as plasma concentration–time data of the reference product from the literature, were used for the simulations. Although products C1 and C2 had drug dissolutions < 85% in 30 min at 0.1 M HCl, simulation results demonstrated that these products would show the same in vivo performance as products A1, A2, B1, and B2. Population simulation results of the ln-transformed 90% confidence interval for the ratio of Cmax and AUC0–t values for all products were within the 80–125% interval, showing to be bioequivalent. Thus, even though the in vitro dissolution behavior of products C1 and C2 was not equivalent to a rapid dissolution profile, the computer simulations proved to be an important tool to show the possibility of bioequivalence for these products.


1970 ◽  
Vol 7 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Golam Kibria ◽  
Muhammad Rashedul Islam ◽  
Reza-ul Jalil

The aim of the present study was to investigate the effect of Ammonio Methacrylate Copolymer Dispersion Type A (Eudragit RL 30 D) and Ammonio Methacrylate Copolymer Dispersion Type B (Eudragit RS 30 D) combination in different weight ratios on the release kinetics of Ambroxol Hydrochloride from coated pellets. Microcrystalline cellulose, lactose, maize starch, hydroxypropyl methylcellulose and the drug was incorporated in the nuclei prepared by Extrusion-Spheronization technique which was coated with Eudragit RL 30D and Eudragit RS 30D in 1:1,1:1.5,1:2,1:2.5 and 1:3 ratios. The in vitro dissolution studies were carried out in 0.1N HCl for 1 hour followed by phosphate buffer (pH 6.8) for 11 h with USP dissolution apparatus Type-II. Drug release decreased with increasing amount of Eudragit RS 30 D in all cases. The drug release followed first order and Higuchi release kinetics. The Korsmeyer plot revealed n=0.50-0.61 or non-Fickian transport mechanism for drug release. From one way ANOVA it was found that the ratio of binary polymer mixer had significant (p < 0.05) effect on drug release. Key words: Aqueous coating, Eudragit, release kinetics, pellet, extrusion-spheronization  DOI = 10.3329/dujps.v7i1.1222 Dhaka Univ. J. Pharm. Sci. 7(1): 75-81, 2008 (June)


2021 ◽  
Vol 11 (5) ◽  
pp. 13089-13101

In this study, a sustainable HPLC-UV-DAD method was developed and validated for the determination of allopurinol in tablets and optimization of the dissolution test using factorial design. The separation of the analyte from the sample matrix was achieved in 3.01 minutes in a C8 column (4.6 mm X 150 mm X 5 μm), using mobile phase 0.1 mol L-1 HCl (25%) + ethanol (50%) + ultrapure water (25%) by UV detection at 249 nm. The method presented satisfactory analytical parameters of validation (specificity, selectivity, linearity, stability, precision, accuracy, and robustness), showing no matrix effects. The dissolution test was optimized by complete factorial design 23 and, the optimal conditions were: HCl 0.001 mol L-1, apparatus II (paddle) and 75 rpm. The analytical procedures and dissolution tests were applied to allopurinol tablets marketed in Bahia, Brazil, to evaluate the dissolution studies. The pharmaceuticals had similar dissolution profiles and first-order dissolution kinetics. This new and sustainable HPLC-UV-DAD method is friendly to the environment and can be used for the routine pharmaceutical analysis of allopurinol in fixed dosage forms.


1970 ◽  
Vol 2 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jesmeen ◽  
Md Mesbah Uddin Talukder ◽  
Abu Taher Md Rajib ◽  
DM Mizanur Rahman

Commercially available four national and four international brands of esomeprazole magnesium sustained release matrix tablets were studied in simulated gastric medium (pH 1.2) for 2 hours and simulated intestinal medium (pH 6.8) for 8 hours time period using USP reference dissolution apparatus. All the national and international brands complied with the USP in-vitro dissolution specifications for drug release in simulated gastric medium. However, one of the national brands (Code: MP-1) and one of the international brands (MP-7) failed to fulfill the official requirement of 80% drug release within 8th hour in simulated intestinal medium. Drug release of that national and international brand were 70.49% and 67.05% respectively within the specified time period, however one national brand (Code: MP-4) released 103.46 % drug within 8th hour in intestinal medium. Drug release profiles were analyzed for zero order, first order and Higuchi equation to reveal the release kinetics perspective of esomeprazole magnesium sustained release matrix tablets. It was found that zero order release kinetics was the predominant release mechanism than first order and Higuchi release kinetics for those brands (Code: MP-2, MP-3, MP-4, MP-5, MP-6 and MP-8) which complied with the USP in vitro dissolution specification for drug releases. On the other hand, first order release kinetics was predominant for one national and also one international non compliant brands (Code: MP-1 and MP-6). Key Words: In vitro dissolution; Sustained release; Market preparations; Kinetic analysis; Esomeprazole; National brand; International brand. DOI: 10.3329/sjps.v2i1.5812Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 27-31


Sign in / Sign up

Export Citation Format

Share Document