Statistical assessment of in vitro drug release kinetics and quality evaluation of desloratadine orally disintegrating generic tablets available in Bangladesh

Author(s):  
Madhabi Lata Shuma ◽  
Shimul Halder

The objective of the present study was to compare the in vitro equivalence of different orally disintegrating tablets (ODT) of Desloratadine (DES) available in Bangladesh pharmaceutical market with the reference brand. The in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method and a comparative study were also carried out with the reference brand. Other pharmacopoeial and non-pharmacopoeial quality assessment parameters including hardness, friability, water absorption ratio, and disintegration time etc. were also evaluated. From the results of the dissolution profile of the commercially available products, it found majority of the products didn’t exhibited compendial requirements in dissolution behavior to the reference brand with model-independent approach ( f2 > 50, f1 < 15) and showed statistically significant differences. Additionally, the data of different physical quality parameters revealed that all commercial products complied with the official specifications. From these findings, it could be suggested that the DES-ODT formulations’ available in the Bangladesh market could be prescribed; however additional experiments might require to clarify the interchangeability among the products.

2020 ◽  
Vol 13 (5) ◽  
pp. 100
Author(s):  
Blasco Alejandro ◽  
Torrado Guillermo ◽  
Peña M Ángeles

This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies.


2021 ◽  
Vol 11 (6-S) ◽  
pp. 86-91
Author(s):  
Madhabi Lata Shuma ◽  
Bishyajit Kumar Biswas ◽  
Sheikh Zahir Raihan ◽  
Shimul Halder

The present study focused to assess in vitro dissolution profiles of four different products of propranolol 10 mg Tablets (Randomly coded as PRP1-PRP4) available in Bangladesh comparing with the reference brand (coded as REF). Propranolol is a competitive non selective beta-adrenergic receptor antagonist used to amend or restore normal heart rhythm in cardiovascular diseases. An in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method at 75 rpm with 500 mL of 0.1N HCl dissolution media at 37.0± 0.5 0C. All the tested locally manufactured propranolol products; PRP1, PRP2, PRP3, PRP4 showed compatible dissolution (87%, 86%, 87%, and 80%, respectively) pattern (dissolution criterion Q=80% in 30 minutes) compared with the reference brand (88% dissolution in 30 minutes). The dissolution behavior was estimated with the reference brand using a model dependent and model-independent approach (f2>50, f1 < 15).  A mechanistic mathematical release kinetics was also evaluated. The best-fit kinetic model was Hixon-Crowell release kinetics for reference brand and PRP1; and first order release kinetics was predominant for PRP2, PRP3 and PRP4. Keywords: propranolol, dissolution, similarity factor, difference factor, dissolution kinetics


2018 ◽  
Vol 13 (2) ◽  
pp. 79
Author(s):  
Bassam Abduh Ali ◽  
Mohammed Gameel Al-haddad ◽  
Abdullah Ahmed Areqi

Clopidogrel is a medication to reduce the risk of heart disease and taken orally. Quality of drug characterizes the production process and every phamaceutical company strives for it but often it is very difficult to achieve. This study was to investigate quality control parameters of some marketed Clopidogrel tablets. To assess the quality, eight different marketed brands of Clopidogrel 75 mg tablets available in Yemeni market collected from different pharmacies in Hodeida city. Different quality parameters like weight variation, hardness, thickness and friability were determined according to established protocols. Then the in-vitro dissolution test, potency, disintegration time were also carried out. UV-spectrophotometer was used to determine the percentage released and assay at 218 nm. All the brands comply the requirements of Pharmacopoeia as they showed acceptable weight variation range. Friability of all brands was less than 1% and no significant differences in disintegration times as they disintegrated within 15 minutes. In case of dissolution profile, all brands except C6 showed acceptable dissolution time as they released more than 60% of drug in 45 minute. The hardness of only two brands was within the range. All brands also meet the potency specifications. This study suggested that most commercially Clopidogrel tablets in Yemen maintain the quality and comply with the pharmacopeia specifications.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 215 ◽  
Author(s):  
Marcelo Dutra Duque ◽  
Daniela Amaral Silva ◽  
Michele Georges Issa ◽  
Valentina Porta ◽  
Raimar Löbenberg ◽  
...  

A biowaiver is accepted by the Brazilian Health Surveillance Agency (ANVISA) for immediate-release solid oral products containing Biopharmaceutics Classification System (BCS) class I drugs showing rapid drug dissolution. This study aimed to simulate plasma concentrations of fluconazole capsules with different dissolution profiles and run population simulation to evaluate their bioequivalence. The dissolution profiles of two batches of the reference product Zoltec® 150 mg capsules, A1 and A2, and two batches of other products (B1 and B2; C1 and C2), as well as plasma concentration–time data of the reference product from the literature, were used for the simulations. Although products C1 and C2 had drug dissolutions < 85% in 30 min at 0.1 M HCl, simulation results demonstrated that these products would show the same in vivo performance as products A1, A2, B1, and B2. Population simulation results of the ln-transformed 90% confidence interval for the ratio of Cmax and AUC0–t values for all products were within the 80–125% interval, showing to be bioequivalent. Thus, even though the in vitro dissolution behavior of products C1 and C2 was not equivalent to a rapid dissolution profile, the computer simulations proved to be an important tool to show the possibility of bioequivalence for these products.


Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
Rashmi Singh ◽  
Monika Saxena ◽  
Deeksha Sahay ◽  
Sujata Singh

Background: Azithromycin, being a very important antibiotic, is manufactured by different pharmaceutical companies and available in numerous brands. Therefore, it requires a quantitative evaluation and assessment of tablets chemical, physical and bioavailability properties.Methods: The physicochemical quality pararametrs like weight variation, size, hardness, friability, disintegration time and dissolution profile of three brands of azithromycin tablets were assessed by performing various test procedures according to established methods.Results: The different brands of tablets showed very slight variations in weight and size, not exceeding more than 5% of standard value. Similarly, hardness of all the brands was less than 5kg/f and friability ranged from 0.2 to 0.5%. All the brands tested disintegrated in <6 minutes and all the brands released >75% of the active ingredient within 45 minutes.Conclusions: All the physiochemical quality parameters of three brands of azithromycin tablets were found to be within the pharmacopeial specifications therefore all the brands were pharmaceutically and chemically equivalent and can be freely interchanged.


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


Author(s):  
Srinivasa Rao Baratam ◽  
Vijayaratna J

Objective: The aim of the study was to develop a floating drug delivery system of levofloxacin (LVF) hemihydrate for sustained drug delivery to improve the extended retention in the stomach, oral bioavailability, and local site-specific action in the stomach. Methods: Preparation of LVF tablets using melt granulation method using hydroxypropyl methylcellulose (HPMC) K4M with sodium bicarbonate as gas generating agent. From LFTA1 to LFTA5, formulations were developed and evaluated for floating properties for swelling characteristics and in vitro drug release studies. In vitro dissolution was carried out using USP II paddle method using 0.1N HCI pH buffer at 50 rpm and samples were measured at 294 nm using ultraviolet-visible spectroscopy. Results: Obtained Fourier-transform infrared charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. In vitro drug release was performed and drug release kinetics were evaluated using the linear regression method and were found to be followed the zero-order release by diffusion controlled release. Optimized formula was found to be LFTA4 with 20% of a polymer with 99.03% of drug release with 12 h of floating time and 32 s floating lag time. Conclusion: Matrix tablets (LFTA4) formulated employing 20% HPMC K4M are best suited to be used for gastroretentive dosage form of LVF.


2017 ◽  
Vol 1 (2) ◽  
pp. 01-03
Author(s):  
Samuel Langhorne

Pramipexole dihydrochloride monohydrate is an antiparkinson’s agent which is known as dopamine D2 receptor agonist. It is structurally different from the ergot-derived drugs, e.g. bromocriptine or pergolide. Pramipexole is designated chemically as (S)-2-Amino-4, 5, 6, and 7-tetrahydro-6-(propylamino) benzothiazole and has the molecular formula C10H17N3S. It comes under class I of Biopharmaceutical Classification System. The purpose of this study was to develop and evaluate pramipexole dihydrochloride monohydrate extended release tablets by wet granulation method using different proportions of polymers and binder. Pre-formulation studies were done initially and the results were found to be within the limits. All the mentioned batches were prepared and granules were evaluated for pre-compression parameters such as loss on drying, bulk density, tapped density and compressibility index. Tablets were evaluated for weight variation, thickness, hardness, friability; disintegration time and assay were found to be within the limits. In vitro dissolutions were performed with 0.05M 6.8 PH phosphate buffer and effect of various polymers were explored. Final selection of formulation was based on dissolution profile, from dissolution studies formulation 9 showed 80% drug release within 20 hours, so it will be compared with innovator. Similarity and difference factors which revealed that formulation (F 9) containing HPMC K 200, Eudragit L100 and binder are most successful as it exhibited in vitro drug release that matched with innovator product. In vitro drug release profile reveals that with increased concentration of Eudragit L 100. Accelerated stability studies were performed for the optimized batch which indicated that there were no changes in drug content and in vitro dissolution.


Sign in / Sign up

Export Citation Format

Share Document