scholarly journals Superdisintegrant: crucial elements for mouth dissolving tablets

2019 ◽  
Vol 9 (2) ◽  
pp. 461-468
Author(s):  
Rada Santosh Kumar ◽  
Annu Kumari

Mouth dissolving tablets have gained more popularity among solid oral dosage forms. They perform better than conventional tablets because of its ease of administration and patient’s compliance. It facilitates water less administration and rapid onset of action. It also helps in improving oral bioavailability. The fast disintegration followed by dissolution leads to quick therapeutic activity makes these tablets superior over available tablets and capsules. Disintegration is an important key step for any solid dosage forms to show its pharmacologic effect as any solid dosage forms should disperse into its fine particles from which it is prepared. In mouth dissolving tablets superdisintegrants are incorporated in right amount for quick disintegration with improved bioavailability. Based on the source various types of superdisintegrants are available. They are synthetic, semi-synthetic, natural, and co-processed.  In this review, main emphasis is given on different types of superdisintegrants used in mouth dissolving tablets, their mechanisms and applications. Keywords: Superdisintegrants, Mouth dissolving, Disintegration, Bioavailability

2018 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Pravin Kumar Sharma ◽  
Pankaj Kumar Sharma ◽  
Gajanan N Darwhekar ◽  
Birendra Shrivastava

Nowadays, novel fast dissolving oral films (FDF) have come in existence as an alternative dosage form in comparison with tablet, capsules, syrup and other oral dosage forms with respect to patient convenience and compliance. Fast dissolving oral films are helpful to paediatric and geriatric patients who experience difficulties in swallowing traditional oral solid-dosage forms. The FDF drug delivery systems are solid dosage form which disintegrate or dissolve within seconds when placed in the mouth cavity without need of water or chewing. FDF provide better drug dissolution, faster onset of action, bypassing the first pass metabolism of drugs and thus enhance their oral bioavailability with reduced dosing frequency. These formulations are suitable for cough, cold, sore throat, allergenic conditions, nausea, pain, hypertension and CNS disorders. The present review provides the details about the recent advancement in design and development of oral fast dissolving film.


2018 ◽  
Vol 6 (1) ◽  
pp. 1-7
Author(s):  
Pravin Kumar Sharma ◽  
Pankaj Kumar Sharma ◽  
Gajanan N Darwhekar ◽  
Birendra Shrivastava

Nowadays, novel fast dissolving oral films (FDF) have come in existence as an alternative dosage form in comparison with tablet, capsules, syrup and other oral dosage forms with respect to patient convenience and compliance. Fast dissolving oral films are helpful to paediatric and geriatric patients who experience difficulties in swallowing traditional oral solid-dosage forms. The FDF drug delivery systems are solid dosage form which disintegrate or dissolve within seconds when placed in the mouth cavity without need of water or chewing. FDF provide better drug dissolution, faster onset of action, bypassing the first pass metabolism of drugs and thus enhance their oral bioavailability with reduced dosing frequency. These formulations are suitable for cough, cold, sore throat, allergenic conditions, nausea, pain, hypertension and CNS disorders. The present review provides the details about the recent advancement in design and development of oral fast dissolving film.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Abdul Latif Ershad ◽  
Ali Rajabi-Siahboomi ◽  
Shahrzad Missaghi ◽  
Daniel Kirby ◽  
Afzal Rahman Mohammed

A lack of effective intervention in addressing patient non-adherence and the acceptability of solid oral dosage forms combined with the clinical consequences of swallowing problems in an ageing world population highlight the need for developing methods to study the swallowability of tablets. Due to the absence of suitable techniques, this study developed various in vitro analytical tools to assess physical properties governing the swallowing process of tablets by mimicking static and dynamic stages of time-independent oral transitioning events. Non-anatomical models with oral mucosa-mimicking surfaces were developed to assess the swallowability of tablets; an SLA 3D printed in vitro oral apparatus derived the coefficient of sliding friction and a friction sledge for a modified tensometer measured the shear adhesion profile. Film coat hydration and in vitro wettability was evaluated using a high-speed recording camera that provided quantitative measurements of micro-thickness changes, simulating static in vivo tablet–mucosa oral processing stages with artificial saliva. In order to ascertain the discriminatory power and validate the multianalytical framework, a range of commonly available tablet coating solutions and new compositions developed in our lab were comparatively evaluated according to a quantitative swallowability index that describes the mathematical relationship between the critical physical forces governing swallowability. This study showed that the absence of a film coat significantly impeded the ease of tablet gliding properties and formed chalky residues caused by immediate tablet surface erosion. Novel gelatin- and λ-carrageenan-based film coats exhibited an enhanced lubricity, lesser resistance to tangential motion, and reduced stickiness than polyvinyl alcohol (PVA)–PEG graft copolymer, hydroxypropyl methylcellulose (HPMC), and PVA-coated tablets; however, Opadry® EZ possessed the lowest friction–adhesion profile at 1.53 a.u., with the lowest work of adhesion profile at 1.28 J/mm2. For the first time, the in vitro analytical framework in this study provides a fast, cost-effective, and repeatable swallowability ranking method to screen the in vitro swallowability of solid oral medicines in an effort to aid formulators and the pharmaceutical industry to develop easy-to-swallow formulations.


2014 ◽  
Vol 103 (2) ◽  
pp. 367-377 ◽  
Author(s):  
Igor E. Shohin ◽  
Julia I. Kulinich ◽  
Galina V. Ramenskaya ◽  
Bertil Abrahamsson ◽  
Sabine Kopp ◽  
...  

2012 ◽  
Vol 101 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Stefanie Strauch ◽  
Jennifer B. Dressman ◽  
Vinod P. Shah ◽  
Sabine Kopp ◽  
James E. Polli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document