scholarly journals Development and Optimization of Solid Lipid Nanoparticle for Topical Delivery

2019 ◽  
Vol 9 (5-s) ◽  
pp. 105-121
Author(s):  
Pallavi M Chaudhari ◽  
Mahananda.V Ghodake

The aim of present work was to develop and evaluate solid lipid nanoparticle (SLNs) based gel for topical delivery of anti-inflammatory drug. Material and method Nabumetone loaded SLNs were developed by hot homogenization followed by ultra- sonication technique using compritol 888 ATO as solid lipid and tween 80 as a surfactant. Developed SLNs were evaluated for particle size, entrapment efficiency (EE) and drug release profile. Process and formulation parameters were optimized. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were carried out on SLNs to mark the change in the drug and lipid modification. The Nabumetone based gels were prepared using carbopol 940 as gelling agent. Results and conclusion: The F14 batch had shown maximum entrapment efficiency up to 94.40 and sustained drug release for more than 7 hours. The particle size of optimized batch (F14) was found to be 16.54. Keywords: Solid lipid nanoparticle, Entrapment efficiency, Colloidal carrier.

2018 ◽  
Vol 8 (6-s) ◽  
pp. 63-69
Author(s):  
Sandip Akaram Bandgar ◽  
Pranali Dhavale ◽  
Pravin Patil ◽  
Sardar Shelake ◽  
Shitalkumar Patil

Solid Lipid Nanoparticles (SLN) are rapidly developing field of nanotechnology with several potential application in drug delivery and research. Drugs having low aqueous solubility not only give low oral bioavailability but provide high inter-and intra subject variability. The purpose of the present study was to investigate the bioavailability enhancement of Prazosin Hydrochloride drug by formulating solid lipid nanoparticle. Prazosin Hydrochloride Drug is an antihypertensive drug with limited bioavailability so that solid lipid nanoparticle (SLN) is one of the approaches to improve bioavailability. SLN were prepared using glyceryl monostearate by hot homogenization followed by Solvent emulsification-ultrasonication. Prazosin Hydrochloride loaded SLN were characterized and optimized by parameters like particle size, zeta potential, XRD, DSC. Proposing Hydrochloride loaded SLN having the particle size 263.8±1.88 and entrapment efficiency 89.29±0.65% shows better bioavailability and optimum stability in studies. The SLN studies prepared using glyceryl mono stearate   as a lipid and Polaxamer 407 as a polymer leads to improve bioavailability of the drug. Keywords: Prazosin Hydrochloride, Solid Lipid Nanoparticles, Entrapment efficiency, DSC


2019 ◽  
Vol 14 (3) ◽  
pp. 228-238
Author(s):  
Swatantra Kumar Singh Kushwaha ◽  
Awani Kumar Rai ◽  
Heena Parveen

Background: Tuberculosis is a major public health problem in the world. Isoniazid is a first line antitubercular drug active against Mycobacterium species which inhibits mycolic acid synthesis. Objective: The aim of the present investigation was the preparation of solid lipid nanoparticle containing Isoniazid to increase bioavailability, sustained release and decrease toxicity by increasing permeability. Methods: Isoniazid was incorporated into SLN for sustained drug delivery, increasing permeability and bioavailability. SLNs were prepared by emulsification followed by the solvent evaporation technique by optimizing lipid, polymer and surfactant ratio under controlled optimized process variables i.e. temperature and stirring speed. SLNs were characterized for particle size analysis, comparative study design in different physiological pH for in-vitro drug release and drug release kinetics. Results: The best in-vitro release for F7 was found to be 80.2% in pH-7.4 and 82.2% in pH-4.5. The particle size of the F7 formulation was found to be in the range of 200- 600nm . Among all 3 optimized formulations, i.e. F3, F7 and F8 in both the pH, F3 followed non-fickian diffusion mechanism in pH-4.5 whereas all the formulations in both pH followed super-case II diffusion mechanism. The stability studies were carried out as per ICH guidelines which signify that the SLNs were found stable in the refrigerated condition. Conclusion: The results clearly demonstrated that SLNs drug delivery system is a promising approach for antitubercular drug delivery as it proved to sustained release, increase permeability, enhanced bioavailability and thus decreased dosing frequency. Kinetic modelling of the formulation with zero, first order, Higuchi and Korsmeyer- peppas is explained in this article.


2020 ◽  
Vol 10 (4) ◽  
pp. 390-403
Author(s):  
Manisha Lalan ◽  
Pranav Shah ◽  
Krina Shah ◽  
Aparna Prasad

Objective: The objective of the present studies was to develop and evaluate curcumin loaded NLCs for management of childhood dermatitis by exploiting its antimicrobial and anti-infective properties and increasing its skin deposition. Methods: The screened lipidic excipients (on solubility basis) were used to formulate NLC dispersion by solvent injection technique and process variables were optimized. Central composite design was employed to study the effect of surfactant, total lipid and ratio of solid lipid to liquid lipid on dependent variables such as particle size, zeta potential, % entrapment efficiency and time for 80% drug release. Curcumin NLCs were incorporated into carbopol 934 P based gel and characterized for morphological and rheological properties, drug release, skin permeation and retention study, skin irritancy, in vitro microbial activity and stability. Results: The optimized formulations exhibited satisfactory physicochemical properties and followed Higuchi kinetic model. The NLC dispersion when incorporated into gel, was stable and nonirritating. Antimicrobial study against S. aureus showed larger zone of inhibition with developed formulation. Statistical model indicated that higher surfactant concentrations, lower lipid concentrations, reducing the solid lipid content minimized the particle size, maximized the % entrapment efficiency and optimized time for 80% drug release, while it had an inverse effect on zeta potential. The TEM of NLC dispersions elucidated its sphericity. Conclusion: The developed curcumin NLC gel exhibited potential in management of childhood dermatitis by virtue of sustained drug release, increase skin deposition and efficient antimicrobial action.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
Vol 19 (5) ◽  
pp. 909-918
Author(s):  
Saqer Alarifi ◽  
Salam Massadeh ◽  
Mohammed Al-Agamy ◽  
Manal A.l. Aamery ◽  
Abdulkareem Al Bekairy ◽  
...  

Purpose: To incorporate ciprofloxacin (CIP) into solid lipid nanoparticles (SLN) in order to enhance its biopharmaceutical properties and antibacterial activity.Methods: A sonication melt-emulsification method was employed for the preparation of CIP-loaded SLN. The composition of the SLN was varied in order to investigate factors such as lipid type and combination ratio, drug to lipid ratio, and surfactant ratio. The produced SLN formulations wereevaluated for their particle size and shape, zeta potential, and entrapment efficiency. In addition, the effect of SLN formulation composition on its drug release profile and antimicrobial activity against Escherichia coli, Pseudomonas Aeruginosa, and Staphylococcus Aureus was also investigated.Results: The generated nanoparticles had particle size in the range of 165 to 320 nm. The zetapotential values were generally low within ± 5. All formulations exhibited entrapment efficiency between 50 and 90 %. CIP release exhibited a biphasic release profile with a low burst phase, followed by uniform controlled-release behavior of various rates. SLN-loaded CIP exhibited one-fold reduction in minimum inhibitory concentration (MIC) and caused significant inhibition of all the three bacterial strains tested, when compared with pure CIP.Conclusion: Loading of CIP into SLN significantly enhances its antimicrobial activity in vitro which can translate to significant enhancement of therapeutic outcomes by minimizing the dose-dependent adverse and side effects and/or enhancing the antimicrobial spectrum of activity. Keywords: Solid lipid nanoparticles, Sonication melt-emulsification, Ciprofloxacin, Escherichia coli, Pseudomonas aeruginosa


Author(s):  
Kumara Swamy S ◽  
Ramesh Alli

The purpose of this study was to develop and evaluate irbesartan (IS) loaded solid lipid nanoparticles (SLNs; IS-SLNs) that might enhance the oral bioavailability of IS. IS, an angiotensin-receptor antagonist, used to treat hypertension. However, poor aqueous solubility and poor oral bioavailability has limited therapeutic applications of IS. Components of the SLNs include either of trimyristin/tripalmitin/tristearin/trilaurate/stearic acid/beeswax, and surfactants (Poloxamer 188 and soylecithin). The IS-SLNs were prepared by hot homogenization followed by ultrasonication method and evaluated for particle size, poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), drug content and in vitro drug release. The physical stability of optimized formulation was studied at refrigerated and room temperature for two months. The optimized IS-SLN formulation (F4) had a mean diameter of about 217.6±3.62 nm, PDI of 0.163±0.032, ZP of -28.5±4.12, assay of 99.8±0.51 and EE of 93.68±2.47%. The formulation showed sustained drug release compared with control formulation over 24 h. Optimized formulation was found to be stable over two months. IS-SLN showed nearly spherical in shape using and converted to amorphous form by DSC. Thus, the results conclusively demonstrated SLNs could be considered as an alternative delivery system for the oral bioavailability enhancement of IS.


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


2019 ◽  
Vol 11 (11) ◽  
pp. 1522-1530
Author(s):  
Mahwish Kamran ◽  
Mir Azam Khan ◽  
Muhammad Shafique ◽  
Maqsood ur Rehman ◽  
Waqar Ahmed ◽  
...  

Atorvastatin is an extensively used lipid lowering agent. But the vital issue associated with it is low oral bioavailability (12%) owing to poor aqueous solubility. To overcome this tribulation, binary solid lipid nano suspension of Atorvastatin (ATO) was formulated by solvent diffusion method. The combination of stearic acid and oleic acid was utilized as a lipid carrier with Tween-80 (surfactant) along with Polyvinylpyrrolidone (co-surfactant). Optimized nano formulation was prepared by changing the formulation variables. Optimized nano suspension (ATO-4) represented particle size 228.3 ± 2.1 nm and polydispersity index (PDI) 0.225 ± 0.02 with zeta potential (ZP) – 33.6 ± 0.02 mV. Encapsulation efficiency along with drug loading capacity was 88.3 ± 2.5% and 4.9 ± 0.14% respectively. Scanning electron microscopic (SEM) analysis exposed spherical shaped amorphous particles. Differential scanning calorimetry (DSC) as well as X-ray powder diffraction (P-XRD) established reduction in drug's crystalline state. Fourier transform infrared (FTIR) spectroscopy exposed no interaction amongst the drug and formulation contents. In-vitro studies revealed sustained pattern of drug release. Stability studies confirmed refrigerated temperature as most suitable for storage of binary solid lipid nano suspension. Plasma concentration versus time curve ascertained 2.78-fold increase in oral bioavailability of ATO nano suspension compared to the marketed product (Lipitor®). Findings proposed desired improvement in oral bioavailability of ATO nano suspension with sustained drug release profile. Thus, binary solid lipid nano suspension could be utilized as an advanced drug delivery system for oral deliverance of hydrophobic drugs.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


Sign in / Sign up

Export Citation Format

Share Document