Preparation, Characterization and Optimization of Irbesartan Loaded Solid Lipid Nanoparticles for Oral Delivery

Author(s):  
Kumara Swamy S ◽  
Ramesh Alli

The purpose of this study was to develop and evaluate irbesartan (IS) loaded solid lipid nanoparticles (SLNs; IS-SLNs) that might enhance the oral bioavailability of IS. IS, an angiotensin-receptor antagonist, used to treat hypertension. However, poor aqueous solubility and poor oral bioavailability has limited therapeutic applications of IS. Components of the SLNs include either of trimyristin/tripalmitin/tristearin/trilaurate/stearic acid/beeswax, and surfactants (Poloxamer 188 and soylecithin). The IS-SLNs were prepared by hot homogenization followed by ultrasonication method and evaluated for particle size, poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), drug content and in vitro drug release. The physical stability of optimized formulation was studied at refrigerated and room temperature for two months. The optimized IS-SLN formulation (F4) had a mean diameter of about 217.6±3.62 nm, PDI of 0.163±0.032, ZP of -28.5±4.12, assay of 99.8±0.51 and EE of 93.68±2.47%. The formulation showed sustained drug release compared with control formulation over 24 h. Optimized formulation was found to be stable over two months. IS-SLN showed nearly spherical in shape using and converted to amorphous form by DSC. Thus, the results conclusively demonstrated SLNs could be considered as an alternative delivery system for the oral bioavailability enhancement of IS.

2019 ◽  
Vol 7 (5) ◽  
pp. 375-388 ◽  
Author(s):  
Vaishali M. Gambhire ◽  
Makarand S. Gambhire ◽  
Nisharani S. Ranpise

Background: Dronedarone HCl (DRD), owing to its poor aqueous solubility and extensive presystemic metabolism shows low oral bioavailability of about 4% without food, which increases to approximately 15% when administered with a high fat meal. Objective: Solid lipid nanoparticles (SLN) were designed with glyceryl monstearate (GMS) in order to improve oral bioavailability of DRD. Methods: Hot homogenization followed by probe sonication was used to prepare SLN dispersions. Box-Behnken design was used to optimize manufacturing conditions. SLN were characterized for particle size, zeta potential, entrapment efficiency, physical state and in vitro drug release. Pharmacokinetics and intestinal uptake study of dronedarone HCl loaded solid lipid nanoparticles (DRD-SLN) in the presence and absence of endocytic uptake inhibitor, chlorpromazine (CPZ) was performed with conscious male Wistar rats. Results: Optimized formulation of SLN showed particle size of 233 ± 42 nm and entrapment efficiency of 87.4 ± 1.29%. Results of pharmacokinetic studies revealed enhancement of bioavailability of DRD by 2.68 folds from SLN as compared to DRD suspension. Significantly reduced bioavailability of DRD-SLNs in the presence of chlorpromazine, demonstrated the role of endocytosis in uptake of SLN formulation. Conclusion: These results indicated that dronedarone HCl loaded SLN could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first pass metabolism.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
Botre P.P ◽  
Maniyar M.G.

The objective of this study was to develop suitable solid lipid nanoparticles for topical delivery of Bifonazole. Bifonazole is an imidazole antifungal drug used in form of ointments. It was patented in 1974 and approved for medical use in 1983. Bifonazole having broad spectrum activity against dermatophytes, moulds, yeasts, fungi and some gram positive bacteria. BFZ SLNs systems were developed by melt emulsification followed by solvent evaporation technique using Compritol 888ATO (Glyceryl behenate) as a solid lipid and Tween 80 as a surfactant. Developed SLNs were evaluated for particle size, polydispersity index (PI), entrapment efficiency (EE) and drug release profiles. Process and formulation parameters were optimized. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were carried out on SLNs to mark the changes in the drug and lipid modifications. The BFZ SLNs based gels were prepared using Carbopol 940 as a gelling agent. The SLNs based gels were evaluated for rheological parameters, in vitro drug release and permeation studies. In vitro antifungal study suggested that the SLNs based gel was more effective in inhibiting growth of Candida albicans. Thus the study concludes that SLNs based gel of BFZ gives a sustained release profile of BFZ and has the potential for treatment of topical fungal infections.


Author(s):  
Kishan V. ◽  
Sandeep V ◽  
Narendar D ◽  
Arjun N

The objective of this study was to develop and evaluate lacidipine (LD) loaded solid lipid nanoparticles (LD-SLNs) for improving the oral bioavailability. LD-SLNs were prepared in two steps. First step was hot homogenization and next by ultrasonication method, using triglycerides (tripalmitin and tristearin), monoglyceride and surfactants (Poloxamer 188 and egg lecithin E80). The prepared LD-SLNs were characterized for particle size, PDI, zeta potential, drug content, entrapment efficiency (EE %).         In vitro drug release studies using a dialysis bag method in 0.1N HCl and pH 6.8 phosphate buffer were conducted. In addition, long-term physical stability of the optimized SLNs was investigated at refrigerated and room temperature for 60 days. FTIR and DSC studies revealed that no interaction between the drug and lipids. LD-SLNs prepared with Dynasan-116 (F3), having the size of 141.86nm, PDI of 0.293, ZP of -22.3 m with 94.75% of EE was optimized and was stable for 60days. Scanning electron microscopic studies showed nearly spherical shaped particles. Further, pharmacokinetic studies were conducted in wistar rats. The relative bioavailability of LD in SLNs was 2.03 times when compared with that of the LD suspension. The results are indicative of SLNs as suitable lipid based carrier system for improving the oral bioavailability of LD. 


Author(s):  
DALIA A. ELATY MOSTAFA ◽  
MAHA K. A. KHALIFA ◽  
SAMEH. S. GAD

Objective: Zolmitriptan, a class of antidepressant drugs with poor bioavailability due to its first-pass metabolism. The aim of this study was to improve systemic bioavailability and explore the brain targeting impact of nasal Zolmitriptan (Zol) solid lipid nanoparticles (SLNs) gel for migraine treatment.  Methods: Stearic acid and cholesterol used as solid lipid and lecithin as a surfactant, emulsion solvent evaporation technique was used to produce Zolmitriptan SLNs. (Zol) SLNs were characterized for particle size, percent entrapment efficiency and in vitro drug release. Formula S6 showed greater percent entrapment efficiency (PEE), adequate particle size and sustained drug release behavior. Formula S6 was integrated into HPMC gel (3%) to prepare nasal gel. Zol SLN nasal gel was subjected to histopathological study to ensure brain targeting.  Results: It was observed that all prepared Zol SLNs were in the nano-sized range with a polydispersity index of<0.5. In the cholesterol/lecithin combination, higher PEE%, better stability, and less agglomeration inclination were discovered. Results of the release profiles showed that developed Zol-SLNs were able to release Zolmitriptan in a sustained manner. Histopathological study of the brain tissues showed that Zolmitriptan SLN nasal gel can reach brain cells and localized for 24 h although the hydrophobicity of the target drug. Conclusion: Intranasal administration of Solid lipid nanostructure of Zolmitriptan through the olfactory pathway in which it travels from the nasal cavity to brain tissue achieved drug targeting potential of about 90% compared with conventional Zolmitriptan tablets. The small particle size helped them to squeeze themselves through the small opening in the olfactory neurons to the brain via different endo-cystic pathways of neuronal cells in nasal tissue membranes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vaibhav Rajoriya ◽  
Varsha Kashaw ◽  
Sushil Kumar Kashaw

Objective: The current paper represents the development, optimization, and characterization of paclitaxel-loaded folate conjugated solid lipid nanoparticles (FA-SLNs). Methods: The ligand (FA-SLNs) conjugated and non-conjugated SLNs (PTX-SLNs) were prepared by hot homogenization method. Both of the formulations (FA-SLNs and PTX-SLNs) were optimized with various parameters i.e. drug loading, stirring time, stirring speed, particle size, and polydispersity index, and characterized. The in-vitro drug release study was performed in different pH environments by using the dialysis bag method. The surface morphology and particle size were determined through scanning electron micorscopy and Transmission Electron Microscopy respectively, The SLNs formulations were also evaluated for the stability study. Result: The particle size of PTX-SLNs and FA-SLNs was determined and found to be 190.1±1.9 and 231.3±2.3 nm respectively. The surface morphology of the SLNs indicates that the prepared formulations are round-shaped and show smooth surfaces. The TEM study indicated that particles were in the range of 100-300 nm. The entrapment efficiency and drug loading capacity of FA-SLNs were found to be 79.42±1.6% and 17.3±1.9%, respectively. In-vitro drug release study data, stated that the optimum drug release was found in an acidic environment at pH 4.0, that showed 94.21% drug release after 16 hours and it proves that optimized formulation FA-SLNs will gave the sustained and better release in tumor tissue that owing acidic environment because of the angiogenesis process. Conclusion: In this research paper, different formulation parameters, found to influence fabrication of drug into Solid lipid nanoparticles, were optimized for high entrapment efficiency and drug loading. The most important parameters were drug:lipid ratio, drug:polymer ratio and lipid: surfactant ratio. Higher in-vitro drug release was observed in pH 4 as compared to the pH 7.4. These result data concludes that FA-SLNs formulation was successfully prepared, optimized and characterized.


Author(s):  
K. RAMESH REDDY ◽  
S. V. SATYANARAYANA ◽  
V. JAYASANKAR REDDY

Objective: The current research was structured to achieve a maximum topical delivery for the drug clobetasol-17-propionate (CP) and to predict the effects of various independent variables like lipid: drug ratio, surfactant, and homogenization time on particulate characters and performance solid lipid nanoparticles (SLNs). Methods: CP loaded SLNs were formulated by Emulsification–Homogenization method and optimized using 33 full factorial designs (Design-Expert software 11.0). Drug loaded SLNs were evaluated for various parameters like particle size, surface charge, polydispersity index, entrapment efficiency, surface morphology, thermal analysis, in vitro drug release through skin (Franz diffusion cell), drug deposition study and stability. Results: The optimized formulation (SLNs) attains a minimal Particle size of 133.3±3.66 nm, Poly dispersibility index of 0.179±0.081, % entrapment efficiency of 78.1±1.11 and Zeta potential of-36.2±0.11mV. Skin permeation study of CP loaded SLNs suspension showed prolonged drug release up to 24h. Maximum drug deposition was obtained after developing the drug into SLNs (48.22µg/ml) when compared to the pure drug (19.12µg/ml). Conclusion: SLNs were promising colloidal particulate carriers by which prolonged drug release and improved skin permeation was achieved for the drug Clobetasol 17- propionate.


Author(s):  
A. Rekha Devi ◽  
M. Vidyavathi ◽  
S. P. Suryateja

Aim: The aim of the present study was to design and evaluate solid lipid nanoparticles of Asenapine maleate (<2% bioavailability) to enhance its oral bioavailability and surface modification for brain targeting. Methods: A modified solvent injection method was used to produce Asenapine maleate loaded solid lipid nanoparticles. A RSM 3-factor, 3-level Box-Behnken design was applied to study the effect of three independent variables, concentrations of lipid (A), drug (B) and surfactant (C) on three dependent variables, particles size (Y1), entrapment efficiency (Y2), and drug release (Y3). 3-D surface response plots were drawn and optimized formulation was selected based on desirability factor. Then it was coated with tween 80 for ease of permeability through blood brain barrier due to intact absorption of solid lipid nanoparticles. Results: The results of coated optimized formulation showed average particle size of 108.9 nm, entrapment efficiency of 78.62%, and in vitro drug release of 98.88±0.102% at 36 hr at pH 7.4. Morphologically, particles were almost spherical in shape with uniform size distribution. Targeting of coated optimized formulation to brain after oral administration was confirmed by fluorescence microscopy studies on male albino wistar strain rats. This research also envisaged that there is a >85% cell viability up to 125µg/ ml concentration of coated solid lipid nanoparticles by MTT assay. Conclusion: Thus, the current study successfully designed, developed an optimized SLN formulation of Asenapine maleate using a 3-factor, 3-level Box-Behnken design for brain targeting to treat Schizophrenia by bypassing the first pass metabolism with enhanced oral bioavailability.


2019 ◽  
Vol 8 (3) ◽  
pp. 627-636

Ketoprofen (KP) is a 2-(3-benzolphenyl) propionic acid with anti-inflammatory, analgesic and antipyretic properties. It belongs to BCS Class II drug. It also has a short half-life of 120 minutes. Drugs acidic nature causes gastric irritation which is a major limitation. The present work aims to develop and evaluate solid lipid nanoparticles (SLN) to provide transdermal drug delivery. SLN loaded gel will enhance the solubility of Ketoprofen thereby increasing bioavailability giving controlled drug release. Solid lipid nanoparticles were prepared by solvent injection followed by probe sonication method. Cetyl palmitate was used as lipid and Tween80 as a surfactant. Batches were prepared by varying the concentration of the lipid phase and the surfactant phase. The solid lipid nanoparticles were evaluated for particle size analysis, drug entrapment efficiency, zeta potential and in vitro drug release study. Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) study were done to study crystallinity behavior.SLN was studied for its anti-inflammatory activity. F4 batch of SLN was incorporated into gel and evaluated for drug content, pH, viscosity, in-vitro diffusion and ex-vivo diffusion study. SLN were successfully prepared. Among the batches F1-F9, F4 batch was selected based upon the size, entrapment efficiency, stability and drug release. The resultant solid lipid nanoparticles showed entrapment efficiency of 78.24%. The solubility was improved by 50 fold. The particle size was 250 nm, PDI was 0.398 and zeta potential -21.98mV. In-vitro drug release of gel from F4 SLN batch showed controlled drug release in 8 hours. Transdermal delivery of SLN retaining its anti-inflammatory activity was successfully developed.


Author(s):  
CHAITALI SURVE ◽  
RUCHI SINGH ◽  
ANANYA BANERJEE ◽  
SRINIVAS PATNAIK ◽  
SUPRIYA SHIDHAYE

Objective: In the current study, the Quality by Design method was utilized for the formulation of solid lipid nanoparticles of Methotrexate (MTX SLNs). Methods: MTX SLNs formulated by melt emulsification method were studied for the effect of independent variables viz. concentration of lipid and surfactants on quality attributes viz. particle size, polydispersity index, and entrapment efficiency of SLNs using 32 factorial design. Results: The optimal formulation was spherical, had a particle size of 147.6±4.1 nm (z-average), a polydispersity index of 0.296±0.058, a zeta potential of −19±0.98 mV, encapsulation efficiency of 98.7±1.55%, and a cumulative drug release of 95.59±0.918% in 5 h. Conclusion: The  in vitro and in vivo studies revealed that SLNs provide a promising oral delivery system to improve the bioavailability of MTX.


Sign in / Sign up

Export Citation Format

Share Document