scholarly journals Study the release pattern of nitrogen as ammonical and nitrate nitrogen from neem-coated and prilled urea in rice as a test crop

2020 ◽  
Vol 8 (5) ◽  
pp. 1122-1125
Author(s):  
Study the release pattern of nitrogen as ammonical ◽  
nitrate nitrogen from neem-coated ◽  
prilled urea in rice as a test crop
2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


Author(s):  
Jia Lu ◽  
Xiaohou Shao ◽  
Chao Yin ◽  
Xinyu Mao ◽  
Long Wang ◽  
...  

Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.


1996 ◽  
Vol 33 (3) ◽  
pp. 185-194 ◽  
Author(s):  
M. Sarioglu ◽  
N. Horan

Anoxic zones are designed for the removal of nitrogen in nitrifying activated sludge plants. This can be carried out either to achieve a nitrogen discharge consent or to eliminate the problem of rising sludges. The rising sludge problem is mostly encountered in medium and small size plants in warm conditions and there is limited information as to the appropriate design of anoxic zones to protect against rising sludges in the secondary sedimentation tanks. Therefore a series of batch experiments were undertaken in order to establish the critical concentration of nitrate-nitrogen which causes rising sludge in the secondary settling tank and the effect of environmental factors such as temperature (15°C to 30°C) and residual carbon source (100 to 600 mg/1 COD) were examined. Based on the results of these experiments an empirical equation was presented which can be used to size an anoxic zone to eliminate rising sludges. The application of this equation at full-scale plants is discussed.


Author(s):  
Gülsel Yurtdaş Kırımlıoğlu ◽  
Sinan Özer ◽  
Gülay Büyükköroğlu ◽  
Yasemin Yazan

Background: Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there’s a need for designing efficient novel drug delivery systems that may enhance of precorneal retention time and corneal permeability. Aim and Objective: The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. Methods: In this study, MOX was incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. Results: MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, XRD and NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified release pattern which followed Korsmeyer-Peppas kinetic model. Following successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies by the reason of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERL-MOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. Conclusion: In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERLMOX 2 formulation has the potential of enhancing ocular bioavailability.


Sign in / Sign up

Export Citation Format

Share Document