scholarly journals Regional scale investigation of net primary productivity associated to dominant land cover classes of Indian Himalayan region

2017 ◽  
Vol 4 (2) ◽  
pp. 264-273 ◽  
Author(s):  
Sandeep Soni ◽  
◽  
Sandipan Mukherjee ◽  
Kireet Kumar ◽  
◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 404 ◽  
Author(s):  
Xin Huang ◽  
Chunbo Huang ◽  
Mingjun Teng ◽  
Zhixiang Zhou ◽  
Pengcheng Wang

Understanding the spatial variation of forest productivity and its driving factors on a large regional scale can help reveal the response mechanism of tree growth to climate change, and is an important prerequisite for efficient forest management and studying regional and global carbon cycles. Pinus massoniana Lamb. is a major planted tree species in southern China, playing an important role in the development of forestry due to its high economic and ecological benefits. Here, we establish a biomass database for P. massoniana, including stems, branches, leaves, roots, aboveground organs and total tree, by collecting the published literature, to increase our understanding of net primary productivity (NPP) geographical trends for each tree component and their influencing factors across the entire geographical distribution of the species in southern China. P. massoniana NPP ranges from 1.04 to 13.13 Mg·ha−1·year−1, with a mean value of 5.65 Mg·ha−1·year−1. The NPP of both tree components (i.e., stem, branch, leaf, root, aboveground organs, and total tree) show no clear relationships with longitude and elevation, but an inverse relationship with latitude (p < 0.01). Linear mixed-effects models (LMMs) are employed to analyze the effect of environmental factors and stand characteristics on P. massoniana NPP. LMM results reveal that the NPP of different tree components have different sensitivities to environmental and stand variables. Appropriate temperature and soil nutrients (particularly soil available phosphorus) are beneficial to biomass accumulation of this species. It is worth noting that the high temperature in July and August (HTWM) is a significant climate stressor across the species geographical distribution and is not restricted to marginal populations in the low latitude area. Temperature was a key environmental factor behind the inverse latitudinal trends of P. massoniana NPP, because it showed a higher sensitivity than other factors. In the context of climate warming and nitrogen (N) deposition, the inhibition effect caused by high temperatures and the lack or imbalance of soil nutrients, particularly soil phosphorus, should be paid more attention in the future. These findings advance our understanding about the factors influencing the productivity of each P. massoniana tree component across the full geographical distribution of the species, and are therefore valuable for forecasting climate-induced variation in forest productivity.


2009 ◽  
Vol 149 (11) ◽  
pp. 2054-2060 ◽  
Author(s):  
Yu Deyong ◽  
Shao Hongbo ◽  
Shi Peijun ◽  
Zhu Wenquan ◽  
Pan Yaozhong

Erdkunde ◽  
2021 ◽  
Vol 75 (3) ◽  
pp. 191-207
Author(s):  
Qi Yi ◽  
Yuting Gao ◽  
Hongrong Du ◽  
Junxu Chen ◽  
Liang Emlyn Yang ◽  
...  

The expansion of artificial woodlands in China has contributed significantly to regional land-cover changes and changes in the regional net primary productivity (NPP). This study used Ximeng County in the Yunnan Province as a case study to investigate the overall changes, associated amplitude, and spatio-temporal distribution of NPP from 2000–2015.The Carnegie-Ames-Stanford approach was used in the rapidly expanding artificial woodland area based on MODIS-NDVI data, meteorological data, and Landsat 5 TM data to calculate the NPP. The results show that (1) artificial woodlands experience a 10fold increase and account for 93 % of the land cover transfer, which was mainly from woodland areas. (2) The NPP was 906.2×109 gC·yr-1 in 2000 and 972.0×109 gC·yr-1 in 2015, presenting a total increase of 65.8×109 gC·yr-1 and a mean increase of 52.4 gC·m-2·yr-1 in Ximeng County. (3) The most notable NPP changes take place in the central and the western border regions, with the increasing NPP of artificial woodlands and arable land offsetting the negative effects of the decrease in woodland NPP. (4) The total NPP in the study area kept increasing, primarily due to the growing area of artificial woodlands as well as the stand age of the woods, whereas the mean value change of the NPP is mostly related to the increasing stand age. (5) The artificial woodlands increase the NPP value more than natural woodlands. While protecting and promoting ecologically valuable natural forests at the same time, it seems quite advantageous to establish regional plantations and coordinate their development on a scientific basis with a view to increasing NPP, economic development, but also the ecological stability of this mountain region. Our study reveals the changes in NPP and its distribution in a rapidly expanding area of artificial woodland in southwest China based on remote-sensing data and the CASA model, providing a decision-making basis for rational land-use management, the optimal utilization of land resources, and a county-scale assessment approach.


2018 ◽  
Vol 28 (8-9) ◽  
pp. 2163-2182 ◽  
Author(s):  
Manoj Kumar ◽  
Savita ◽  
Hukum Singh ◽  
Rajiv Pandey ◽  
M. P. Singh ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 130
Author(s):  
Wenxiu Xing ◽  
Yuan Chi ◽  
Xuejian Ma ◽  
Dahai Liu

Net Primary Productivity (NPP) can effectively reflect the characteristics and strength of the response to external disturbances on estuarine alluvial island ecosystems, which can provide evidence for regulating human development and utilization activities and improving blue carbon capacity. However, there are a few studies on NPP of estuarine alluvial islands. We established a model based on a Carnegie–Ames–Stanford Approach (CASA) to estimate NPP on Chongming Island, a typical estuarine alluvial island, by considering the actual ecological characteristics of the island. The NPP of different land-cover types and protected areas in different years and seasons were estimated using Remote Sensing and Geographic Information System as the main tools. Correlations between NPP and Remote Sensing-based spatially heterogeneous factors were then conducted. In the last 30 years, the mean NPP of Chongming Island initially increased and then slowly decreased, while total NPP gradually increased. In 2016–2017, Chongming Island total NPP was 422.32 Gg C·a−1, and mean NPP was 287.84 g C·m−2·a−1, showing significant seasonal differences. NPP showed obvious spatial differentiation in both land-cover and protected area types, resulting from joint influences of natural and human activities. Chongming Island vegetation growth status and cover were the main factors that positively affected NPP. Soil surface humidity increased NPP, while soil salinity, surface temperature, and surface aridity were important NPP limiting factors.


2020 ◽  
Vol 40 (21) ◽  
Author(s):  
张筠,张春华,张安定,方美红,吴孟泉,林哲,张奕昂,宋晓林 ZHANG Jun

Sign in / Sign up

Export Citation Format

Share Document