scholarly journals The effect of inoculum and glucose addition on polyhydroxyalkanoate production by Brevibacterium sp. B45

2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Diah - RATNANINGRUM ◽  
Een Sri ENDAH ◽  
Akbar Hanif Dawam ABDULLAH ◽  
Vienna SARASWATY ◽  
Puspita - LISDIYANTI ◽  
...  

Petroleum-based plastics are the major cause of environmental pollution because the plastics need years to be degraded. The difficulties in handling waste of petroleum-based plastic have motivated researchers to produce environmentally friendly plastic materials that are biologically degradable; one of them is polyhydroxyalkanoate (PHA). Polyhydroxyalkanoate is natural biodegradable biopolymers produced by bacteria as an intracellular carbon  and  energy storage. This polymer is an alternative source of plastics  with similar physical properties to petroleum-based plastic.It can be easily biodegraded aerobically and anaerobically. This study examined the potential of one superior isolate as PHA producers, i.e.,Brevibacterium sp. B45. Brevibacterium sp. B45 was cultivated in Ramsay’s minimal medium with inoculum concentrations were 1, 2, and 3% (v/v)and glucose concentrations were 1, 3, and 5% (w/v). The cultivation of  Brevibacterium sp. B45 was carried out in a 500 mL Erlenmeyer flask on a shaker incubator with 150 rpm and 30 oC for 72 hours. PHA recovery was carried out by chloroform extraction and characterized by scanning electron microscopy (SEM), Fourier transformed infrared (FTIR), and differential scanning calorimetric (DSC) methods. The highest yield of dried biomass (2.92%) was obtained using 3% inoculum and 3% glucose. The melting temperature (Tm), enthalpy (ΔHf), and crystallinity (Xc) of the PHA product were 172.1 °C, 61.04 J g-1, and 41.08%, respectively. Data of SEM show that a porous surface characterized morphological of purified PHA grains. The functional units of purified PHA grains were C=O, CH3, C-O, C-O-C, C-C, C-H, and -OH. The purified PHA grains show a similar spectrum to the standard Poly-3-hydroxybutyrate (PHB). Therefore, it could be assumed that PHA produced by Brevibacterium sp. B45 was most likely PHB.

2018 ◽  
Vol 56 (4A) ◽  
pp. 13 ◽  
Author(s):  
Nguyễn Thúy Chinh ◽  
Hoang Thai ◽  
Loc Thi Thach ◽  
Giang Duc Le ◽  
Thuy Phuong Ngo

In this work, alginate (AG)/chitosan (CS)/lovastatine (LS) AG/CS/PCL/LS composite films using polycaprolactone (PCL)  are prepared by solution method with the ratio of AG/CS and LS content fixed at 4/1 and 10 wt.% (in comparison with the total weight of CS and AG), respectively.  The PCL content is used at 3, 5 and 10 wt.% (in compared with total weight of AG, CS and LS). The role of PCL as a compatibilizer in AG)/CS)/LS composites is considered by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetric (DSC) methods. Based on the change in FTIR spectra, morphology and thermal parameters of AG/CS/PCL/LS composites, it can be seen that PCL has effectiveness of compatibility for AG, CS, and LS as well as plasticity for the composites. Besides, the influence of PCL content on the swelling degree of the composites is also investigated. 


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Claudia Funke ◽  
Venkata Sai Kiran Chakrvadhanula

Abstract Development of highly efficient batteries with more rational understanding and precise control of the underlying microstructural features requires high resolution based characterization tools. Electron microscopy and spectroscopy offers information about the structure, morphology, chemistry and chemical composition of the battery materials on nano and atomic scale enabling us to establish the synthesis-structure-performance relationship and further direct the design of new battery materials with improved and high performance. The key factors for a successful electrochemical system are the structure, morphology, chemistry and chemical information of the component materials. The improvement and further development of energy storage systems is based on detailed knowledge and interpretation of morphology, microstructure and phase composition of the individual components like electrodes, current collector, and separator. Additionally, the long-term stability of batteries is affected by the interaction of several components not only at their common interface but also in the volume of the whole device and in combination with intrinsic emerging mechanical loads. Battery materials require advanced skills and techniques to improve material combinations and synthesis strategies. High quality images, in situ measurements and chemical analysis can contribute to this. The most important reason for the usage of electron microscopy instead of light microscopy is the diffraction limitation of resolution which is dependent of the wavelength. According to the Rayleigh criterion two points are regarded as just resolved when the principal diffraction maximum of one image coincides with the first minimum of the other. The diameter of the corresponding Airy disc is direct proportional to the wavelength. With the Planck constant h = 6.6 · 10–34 Js, the electron mass me = 9.1 · 10–31 kg, e = 1.6 · 10–19 C, and the speed of light c = 3.0 · 108 m/s the wavelength of electrons are given trough the de-Broglie wavelength: $${\lambda _{{\text{de Broglie}}}} = \frac{h}{{{p_e}}} = \frac{h}{{{m_e} \cdot {v_e}}} = \frac{h}{{\sqrt {2 \cdot {m_e} \cdot e \cdot U} }} \approx \frac{{1.22 \cdot {{10}^{ - 9}}{\text{ m}}}}{{\sqrt {\frac{U}{{\text{V}}}} }},$$ where ${v_e}$ is the velocity of the electrons and U the acceleration voltage for the electrons. For higher acceleration voltages U the relativistic correction is $${\lambda _{{\text{de Broglie}}}} = \frac{h}{{{p_e}}} = \frac{h}{{{m_e} \cdot {v_e}}}\sqrt {1 - \frac{{v_e^2}}{{{c^2}}}} = \approx \frac{{1.22 \cdot {{10}^{ - 9}}{\text{ m}}}}{{\sqrt {\frac{U}{V}\left( {1 + 0.9788 \cdot {{10}^{ - 6}}{\text{ }}\frac{U}{{\text{V}}}} \right)} }}$$ Thus, the wavelength of electrons passed through 1 kV to 30 kV acceleration voltages is in the range from 3.9 · 10–11 m down to 7.0 · 10–12 m, which is the magnitude utilized for scanning electron microscopy (SEM). Transmission electron microscopes (TEM) require higher acceleration voltages up to 300 kV because the imaging electrons have to transmit the specimen. Therefore, the wavelength in TEMs is even smaller, i.e. 2.0 · 10–12 m. Hence, the smaller wavelength implies higher resolution for TEM than for SEM. Another important difference between transmission and scanning electron microscopy is based on the type of electrons used for imaging. TEM is based on transmitted electrons and provides the details about morphology, internal composition, structure and crystallinity. SEM uses backscattered or secondary electrons and focuses on the sample’s surface and its composition. The sample for TEM has to be cut thinner whereas there is no such need for SEM sample. Advanced techniques in state-of-the-art electron microscopy are always under development towards their wide applications in various aspects of materials research. Research in the field of advanced TEM techniques of battery systems is driven by the thirst towards energy storage systems in order to have better energy storage capabilities. Different groups worldwide contribute to a basic understanding of the processes that occur during the charging/discharging of a battery, as a basis for optimizing electrode, electrolyte materials and their interfaces. For both, electron microscopy methods benefit from the multitude of interactions which take place after the electron beam hits the specimen surface or passed the specimen volume. The main aspects in respect to battery materials will be reviewed in the following sections.


2011 ◽  
Vol 331 ◽  
pp. 342-346
Author(s):  
Yong Qiang Li ◽  
Jin Qiang Liu ◽  
Chun Jie Qian ◽  
Ting Ting Liu

In this paper, temperature-sensitive PET fabrics were prepared by Ar-plasma-induced simultaneous grafting Ploy-N-isopropylacrylamide (PNIPAAm) onto PET fabric. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the grafted fabric. Then the surface morphology of the grafted fabric was observed from scanning electron microscopy (SEM) and AFM. The results show that the PNIPAAm was grafted onto PET fabrics, respectively. The grafted PET fabrics are characterized by differential scanning calorimetric analysis (DSC). The DSC analysis results indicated that LCST value of the grafted fabric was around 32°C. And the water permeability of the grafted sample showed a sharp change around 32°C. It was proved that grafted fabric was sensitive to temperature.


2021 ◽  
Vol 945 (1) ◽  
pp. 012035
Author(s):  
Brenda Lim Ai Lian ◽  
Steven Lim ◽  
Pang Ling Yean ◽  
Siew Hoong Shuit ◽  
Huei Wong Kam

Abstract The development of technology and the growth in human population had resulted in a surge in energy demand and biomass waste production. Metal-air battery (MAB) is a potential energy storage technology with high theoretical energy density and safety. However, the conventional air cathode material synthesized from carbon nanotube (CNT) is rather costly. In this study, several biomass wastes such as oil palm empty fruit bunch (OPEFB), garlic peel (GP) and oil palm frond (OPF) were investigated to identify a suitable greener and efficient precursor to syntheelesize carbon nanoparticle as air electrode material for MAB. The carbon materials were synthesized through carbonization of precursor at different temperatures of 450 °C, 600 °C, and 700 °C before activation with potassium hydroxide (KOH) through wet impregnation method. The materials synthesized were evaluated based on its chemical and physical properties through characterization using thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersion x-ray (SEM-EDX), field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analysis. Based on the experiments conducted, it was found that the suitable precursor was the OPF as it displayed a better tunability for enhanced electrical conductivity as it was able to achieve smaller sized particles with higher specific surface area of 548.26 m2/g and hierarchical porous structure at 700 °C compared to OPEFB and GP. This study proved that OPF could be a promising alternative to CNT as an electrode material which is more sustainable and cost efficient for energy storage application such as MAB.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Sign in / Sign up

Export Citation Format

Share Document