scholarly journals Ultra-deep sub-arcsec 5 GHz JVLA observations of GOODS-N: the nature of the radio emission in the faint radio source population

2016 ◽  
Author(s):  
Daria Guidetti ◽  
Marco Bondi ◽  
Isabella Prandoni ◽  
R. J. Beswick ◽  
T. W.B. Muxlow ◽  
...  
2013 ◽  
Vol 9 (S304) ◽  
pp. 205-208
Author(s):  
Elizabeth K. Mahony

AbstractUntil recently, the radio sky above 5 GHz was relatively unexplored. This has changed with the completion of the Australia Telescope 20 GHz survey (AT20G; Murphy et al., 2010); a blind survey of the southern sky down to a limiting flux density of 40 mJy. The AT20G survey provides by far the largest and most complete sample of high-frequency radio sources yet obtained, offering new insights into the nature of the high-frequency active galaxy population. Whilst the radio data provides a unique sample of objects, these data alone are insufficient to completely constrain models of radio source properties and the evolution of radio galaxies. Complementary multiwavelength data is vital in understanding the physical properties of the central black hole.In this talk I will provide a brief overview of the AT20G survey, followed by a discussion of the multiwavelength properties of the high-frequency source population. In particular, I will focus on the optical properties of AT20G sources, which are very different to those of a low-frequency selected sample, along with the gamma-ray properties where we find a correlation between high-frequency radio flux density and gamma-ray flux density. By studying the multiwavelength properties of a large sample of high-frequency radio sources we gain a unique perspective on the inner dynamics of some of the most active AGN.


1991 ◽  
Vol 102 ◽  
pp. 1258 ◽  
Author(s):  
E. B. Fomalont ◽  
R. A. Windhorst ◽  
J. A. Kristian ◽  
K. I. Kellerman
Keyword(s):  

2019 ◽  
Vol 15 (S356) ◽  
pp. 247-251
Author(s):  
Biny Sebastian ◽  
Preeti Kharb ◽  
Christopher P. O’ Dea ◽  
Jack F. Gallimore ◽  
Stefi A. Baum ◽  
...  

AbstractThe role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.


2018 ◽  
Vol 616 ◽  
pp. A128 ◽  
Author(s):  
N. Herrera Ruiz ◽  
E. Middelberg ◽  
A. Deller ◽  
V. Smolčić ◽  
R. P. Norris ◽  
...  

We present very long baseline interferometry (VLBI) observations of 179 radio sources in the COSMOS field with extremely high sensitivity using the Green Bank Telescope (GBT) together with the Very Long Baseline Array (VLBA) (VLBA+GBT) at 1.4 GHz, to explore the faint radio population in the flux density regime of tens of μJy. Here, the identification of active galactic nuclei (AGN) is based on the VLBI detection of the source, meaning that it is independent of X-ray or infrared properties. The milli-arcsecond resolution provided by the VLBI technique implies that the detected sources must be compact and have large brightness temperatures, and therefore they are most likely AGN (when the host galaxy is located at z ≥ 0.1). On the other hand, this technique only allows us to positively identify when a radio-active AGN is present, in other words, we cannot affirm that there is no AGN when the source is not detected. For this reason, the number of identified AGN using VLBI should be always treated as a lower limit. We present a catalogue containing the 35 radio sources detected with the VLBA+GBT, ten of which were not previously detected using only the VLBA. We have constructed the radio source counts at 1.4 GHz using the samples of the VLBA and VLBA+GBT detected sources of the COSMOS field to determine a lower limit for the AGN contribution to the faint radio source population. We found an AGN contribution of >40−75% at flux density levels between 150 μJy and 1 mJy. This flux density range is characterised by the upturn of the Euclidean-normalised radio source counts, which implies a contribution of a new population. This result supports the idea that the sub-mJy radio population is composed of a significant fraction of radio-emitting AGN, rather than solely by star-forming galaxies, in agreement with previous studies.


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


1996 ◽  
Vol 175 ◽  
pp. 85-87 ◽  
Author(s):  
D. Dallacasa ◽  
R.T. Schilizzi ◽  
H.S. Sanghera ◽  
D.R. Jiang ◽  
E. Lüdke ◽  
...  

3C286 (1328+307) is a powerful radio source identified with a quasar at z=0.849. There is a foreground galaxy responsible for an H I absorption line system at z=0.6922 (Brown & Roberts 1973), centered approximately 2.″5 to the southeast of 3C286. The radio source has a steep spectrum (α = −0.61, Sv ∝ vα between 1.4 and 15 GHz) which turns over at about 100 MHz. Subarcsecond resolution radio images show a misaligned triple structure, dominated by the central component (Spencer et al. 1989) which accounts for at least 95% of the total flux density at all frequencies. 3C286 is one of the strongest extragalactic sources in polarized emission (0.84 Jy at 5 GHz and 1.41 Jy at 1.4 GHz) and with a rotation measure close to 0 rad m–2 (Rudnick and Jones 1983). Hence the observed orientation of the electric field vector is essentially independent of frequency.


2008 ◽  
Vol 689 (2) ◽  
pp. 883-888 ◽  
Author(s):  
C. L. Carilli ◽  
Nicholas Lee ◽  
P. Capak ◽  
E. Schinnerer ◽  
K.‐S. Lee ◽  
...  

1976 ◽  
Vol 3 (1) ◽  
pp. 53-55 ◽  
Author(s):  
J. A. Roberts

The radio emission from Jupiter in the frequency range from ∽ 50 MHz to ∽ 5 GHz is mainly synchrotron emission from electrons in the intense radiation belt which surrounds Jupiter out to several planetary radii. Information about the pitch angles of these electrons can be derived both from the radio observations and from the Pioneer space probe observations. In this communication we discuss the pitch angle distribution inferred from the radio data and the apparent conflict with the Pioneer data.


1993 ◽  
Vol 263 (1) ◽  
pp. 98-122 ◽  
Author(s):  
C. R. Benn ◽  
M. Rowan-Robinson ◽  
R. G. McMahon ◽  
T. J. Broadhurst ◽  
A. Lawrence

2019 ◽  
Vol 627 ◽  
pp. A142
Author(s):  
E. Vardoulaki ◽  
E. F. Jiménez Andrade ◽  
A. Karim ◽  
M. Novak ◽  
S. K. Leslie ◽  
...  

Context. Given the unprecedented depth achieved in current large radio surveys, we are starting to probe populations of radio sources that have not been studied in the past. However, identifying and categorising these objects, differing in size, shape and physical properties, is becoming a more difficult task. Aims. In this data paper we present and characterise the multi-component radio sources identified in the VLA-COSMOS Large Project at 3 GHz (0.75 arcsec resolution, 2.3 μJy beam−1 rms), i.e. the radio sources which are composed of two or more radio blobs. Methods. The classification of objects into multi-components was done by visual inspection of 351 of the brightest and most extended blobs from a sample of 10,899 blobs identified by the automatic code BLOBCAT. For that purpose we used multi-wavelength information of the field, such as the 1.4 GHz VLA-COSMOS data and the Ultra Deep Survey with the VISTA telescope (UltraVISTA) stacked mosaic available for COSMOS. Results. We have identified 67 multi-component radio sources at 3 GHz: 58 sources with active galactic nucleus (AGN) powered radio emission and nine star-forming galaxies. We report eight new detections that were not observed by the VLA-COSMOS Large Project at 1.4 GHz, due to the slightly larger area coverage at 3 GHz. The increased spatial resolution of 0.75 arcsec has allowed us to resolve (and isolate) multiple emission peaks of 28 extended radio sources not identified in the 1.4 GHz VLA-COSMOS map. We report the multi-frequency flux densities (324 MHz, 325 MHz, 1.4 GHz & 3 GHz), star formation rates, and stellar masses of these objects. We find that multi-component objects at 3 GHz VLA-COSMOS inhabit mainly massive galaxies (> 1010.5 M⊙). The majority of the multi-component AGN lie below the main sequence of star-forming galaxies (SFGs), in the green valley and the quiescent region. Furthermore, we provide detailed descriptions of the objects and find that amongst the AGN there are two head-tail, ten core-lobe, nine wide-angle-tail (WAT), eight double-double or Z-/X-shaped, three bent-tail radio sources, and 26 symmetric sources, while amongst the SFGs we find the only star-forming ring seen in radio emission in COSMOS. Additionally, we report a large number (32 out of 58) of disturbed/bent multi-component AGN, 18 of which do not lie within X-ray groups in COSMOS (redshift range 0.08 ≤ z <  1.53). Conclusion. The high angular resolution and sensitivity of the 3 GHz VLA-COSMOS data set give us the opportunity to identify peculiar radio structures and sub-structures of multi-component objects, and relate them to physical phenomena such as AGN or star-forming galaxies. This study illustrates the complexity of the μJy radio-source population; at the sensitivity and resolution of 3 GHz VLA-COSMOS, the radio structures of AGN and SFG both emitting radio continuum emission, become comparable in the absence of clear, symmetrical jets. Thus, disentangling the AGN and SFG contributions using solely radio observations can be misleading in a number of cases. This has implications for future surveys, such as those done by square kilometre array (SKA) and precursors, which will identify hundreds of thousands of multi-component objects.


Sign in / Sign up

Export Citation Format

Share Document