scholarly journals Role of Target Resonances In Low-energy nucleon and α Interactions with Weakly-bound Nuclei

2017 ◽  
Author(s):  
Ken Amos ◽  
Steven Karataglidis ◽  
Dirk van der Knijff ◽  
Paul Fraser ◽  
Kym Massen-Hane ◽  
...  
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 640
Author(s):  
Artem I. Khrebtov ◽  
Vladimir V. Danilov ◽  
Anastasia S. Kulagina ◽  
Rodion R. Reznik ◽  
Ivan D. Skurlov ◽  
...  

The passivation influence by ligands coverage with trioctylphosphine oxide (TOPO) and TOPO including colloidal CdSe/ZnS quantum dots (QDs) on optical properties of the semiconductor heterostructure, namely an array of InP nanowires (NWs) with InAsP nanoinsertion grown by Au-assisted molecular beam epitaxy on Si (111) substrates, was investigated. A significant dependence of the photoluminescence (PL) dynamics of the InAsP insertions on the ligand type was shown, which was associated with the changes in the excitation translation channels in the heterostructure. This change was caused by a different interaction of the ligand shells with the surface of InP NWs, which led to the formation of different interfacial low-energy states at the NW-ligand boundary, such as surface-localized antibonding orbitals and hybridized states that were energetically close to the radiating state and participate in the transfer of excitation. It was shown that the quenching of excited states associated with the capture of excitation to interfacial low-energy traps was compensated by the increasing role of the “reverse transfer” mechanism. As a result, the effectiveness of TOPO-CdSe/ZnS QDs as a novel surface passivation coating was demonstrated.


2000 ◽  
Vol 458 (1-3) ◽  
pp. 155-161 ◽  
Author(s):  
S Walter ◽  
V Blum ◽  
L Hammer ◽  
S Müller ◽  
K Heinz ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 357-361 ◽  
Author(s):  
Igor V. Khromushin ◽  
Taтiana I. Aksenova ◽  
Turgora Tuseyev ◽  
Karlygash K. Munasbaeva ◽  
Yuri V. Ermolaev ◽  
...  

The effect of irradiation with heavy ions Ne, Ar, and Kr of various energies on the structure and properties of ceramic barium cerate doped with neodymium and annealed in air at 650°C for 7 hours is studied. It is noted that blistering was observed on cerate surface during its irradiation by low energy Ne ions, whereas it was not observed under low-energy Ar and Kr ions irradiation. Irradiation of the cerate with high energy ions caused partial amorphization of the irradiated surface of the material, while the structure of the non-irradiated surface did not change. In addition, the irradiated surface of the cerate endured solid-phase structural changes. Thus, upon high-energy ions irradiation in the range of Ne, Ar, Kr the cerate surface resembled the stages of spherulite formation - nucleation, growth (view of cauliflower), formation of spherulitic crust, respectively. The increase in water molecules release and reduction of molecular oxygen release from the barium cerate, irradiated by high-energy ions is found during vacuum constant rate heating. It is concluded that cerates undergo changes to the distances significantly exceeding the ion ranges in these materials. Features of high-energy ions influence on thermal desorption of carbon dioxide from cerates show, apparently, the formation of weakly bound carbonate compounds on the cerate surface in the irradiation process.


2015 ◽  
Vol 14 ◽  
pp. 383-389 ◽  
Author(s):  
Kristen Parrish ◽  
Reshma Singh ◽  
Szu-Cheng Chien
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahryar Habibi

Purpose The purpose of this study is to design a zero-energy home, which is known to be capable of balancing its own energy production and consumption close to zero. Development of low-energy homes and zero-net energy houses (ZEHs) is vital to move toward energy efficiency and sustainability in the built environment. To achieve zero or low energy targets in homes, it is essential to use the design process that minimizes the need for active mechanical systems. Design/methodology/approach The methodology discussed in this paper consists of an interfacing building information modeling (BIM) tool and a simulation software to determine the potential influence of phase change materials on designing zero-net energy homes. Findings BIM plays a key role in advancing methods for architects and designers to communicate through a common software platform, analyze energy performance through all stages of the design and construction process and make decisions for improving energy efficiency in the built environment. Originality/value This paper reviews the literature relevant to the role of BIM in helping energy simulation for the performance of residential homes to more advanced levels and in modeling the integrated design process of ZEHs.


Sign in / Sign up

Export Citation Format

Share Document