scholarly journals Development of high spatial resolution cold/ultra- cold neutron detector using fine-grained nuclear emulsion

2017 ◽  
Author(s):  
Naotaka Naganawa ◽  
Shogo Awano ◽  
Masahiro Hino ◽  
Masanori Hirose ◽  
Katsuya Hirota ◽  
...  
2017 ◽  
Vol 88 ◽  
pp. 224-230 ◽  
Author(s):  
N. Naganawa ◽  
S. Awano ◽  
M. Hino ◽  
M. Hirose ◽  
K. Hirota ◽  
...  

2021 ◽  
Author(s):  
Abdul Muneem ◽  
Junya Yoshida ◽  
Hiroyuki Ekawa ◽  
Masahiro Hino ◽  
Katsuya Hirota ◽  
...  

Abstract Neutron imaging is a non-destructive inspection technique with a wide range of potential applications. One of the key technical interests concerning neutron imaging is to achieve micrometer-scale spatial resolution. However, developing a neutron detector with a high spatial resolution is a challenging task. Recent efforts are focused on achieving this milestone or even submicrometer spatial resolution. Herein, we introduce our technique for neutron imaging using a fine-grained nuclear emulsion and evaluate the spatial resolution. We used the fine-grained nuclear emulsion with a gadolinium-based Siemens star test pattern and a grating with a periodic structure of 9 μm. The deduced value of the spatial resolution is less than 1 μm using the developed technique. To the best of our knowledge, the submicrometer spatial resolution that we achieved using our method is the best among all reported neutron imaging devices.


2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Katsuya Hirota ◽  
Tomoko Ariga ◽  
Masahiro Hino ◽  
Go Ichikawa ◽  
Shinsuke Kawasaki ◽  
...  

A neutron detector using a fine-grained nuclear emulsion has a sub-micron spatial resolution and thus has potential to be applied as high-resolution neutron imaging. In this paper, we present two approaches to applying the emulsion detectors for neutron imaging. One is using a track analysis to derive the reaction points for high resolution. From an image obtained with a 9 μm pitch Gd grating with cold neutrons, periodic peak with a standard deviation of 1.3 μm was observed. The other is an approach without a track analysis for high-density irradiation. An internal structure of a crystal oscillator chip, with a scale of approximately 30 μm, was able to be observed after an image analysis.


It is unnecessary to stress the many significant contributions made during the past 20 years to nuclear and high-energy physics by means of the nuclear emulsion technique. One needs only to recall the new particles and decay modes that have been first observed with it. With the development of other powerful techniques, however, such as the spark-chamber and bubble-chamber, readily adaptable to automatic methods of analysis and data handling, nuclear emulsion has inevitably tended to fall into the position of a supplementary method. Nevertheless, there are still important experiments for which it is the most convenient, indeed in some cases the only, technique available, and this paper will discuss such experiments, either recently carried out or proposed for the future, using beams of particles from high-energy accelerators. Nuclear emulsion possesses one most significant advantage over all other tech­niques, namely, the extraordinarily high spatial resolution of which it is capable. Other techniques can resolve events separated by tenths of millimetres. Nuclear emulsion can resolve events separated by tenths of micrometres. This high spatial resolution has made possible the measurement of the lifetime of the π 0 -meson (ca.10 -16 s) and is the basis of our confidence that there are no other commonly occurring unstable particles with lifetimes in the range 10 -11 to 10 -16 s. Most of the experiments described in this paper are particularly suited to the nuclear emulsion technique because they make use of this characteristic feature.


2021 ◽  
Author(s):  
Xinyu Dou ◽  
Zhu Liu

<p>The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO<sub>2</sub>) emissions. This research first presented near-real-time high-spatial-resolution(0.1°*0.1°) and high-temporal-resolution(daily) gridded estimates of CO<sub>2</sub> emissions for different sectors named Carbon Monitor Gridded Dataset(CMGD). This dataset responds to the growing and urgent need for high-quality, fine-grained CO<sub>2</sub> emission estimates to support global emissions monitoring on the refined spatial scale. CMGD is derived from our Carbon Monitor, a near-real-time daily dataset of global CO<sub>2</sub> emission from fossil fuel and cement production, including detailed information in 6 sectors and main countries. Based on EDGAR v5.0 gridded CO<sub>2</sub> emissions map and other geospatial proxies, we finally constructed CMGD with a high spatial resolution of 0.1 degree. Here, we provided the total emissions of specific countries and analyzed the countries with larger emissions (including the EU). Furthermore, we analyzed the daily emission changes of several typical cities around the world and provided insights on the contributions of various sectors. Through CMGD, we can get a much faster and more fine-grained overview, including timelines that show where and how emissions decreases have corresponded to lockdown measures at the finer spatial scales. The fine-grain and timeliness of CMGD emissions estimates will facilitate more local and adaptive management of CO<sub>2</sub> emissions during both the pandemic recovery and the ongoing energy transition.</p>


2021 ◽  
Author(s):  
Jianjin Zhou ◽  
Jianrong Zhou ◽  
Xiaojuan Zhou ◽  
Lin Zhu ◽  
Jianqing Yang ◽  
...  

Abstract In recent years, Gas Electron Multiplier (GEM) neutron detector has been developing towards high spatial resolution and high dynamic counting range. A novel concept of the Al stopping layer was proposed to enable the detector to achieve sub-millimeter (sub-mm) spatial resolution. The neutron conversion layer was coated with the Al stopping layer to limit the emission angle of ions into the drift region. The short track projection of ions was obtained on the signal readout board, and the detector would get good spatial resolution. The spatial resolutions of the GEM neutron detector with Al stopping layer were simulated and optimized based on Geant4GarfieldInterface. When Al stopping layer was 3.0 μm thick, drift region was 2 mm thick, strip pitch was 600 μm, and digital readout was employed. The spatial resolution of the detector was 0.76 mm, and the thermal neutron detection efficiency was about 0.01%. Thus, the GEM neutron detector with a simple detector structure and a fast readout mode was developed to obtain a high spatial resolution and high dynamic counting range. It could be used for the direct measurement of a high-flux neutron beam, such as Bragg transmission imaging, very small-angle scattering neutron detection and neutron beam diagnostic.


Sign in / Sign up

Export Citation Format

Share Document