scholarly journals High Energy Astrophysical Neutrino Flux Measurement Using Neutrino-induced Cascades Observed in 4 Years of IceCube Data

Author(s):  
Hans Martin Niederhausen ◽  
Yiqian Xu ◽  
2006 ◽  
Vol 652 (1) ◽  
pp. 206-215 ◽  
Author(s):  
M. E. C. Swanson ◽  
K. Abe ◽  
J. Hosaka ◽  
T. Iida ◽  
K. Ishihara ◽  
...  

2015 ◽  
Vol 809 (1) ◽  
pp. 98 ◽  
Author(s):  
M. G. Aartsen ◽  
K. Abraham ◽  
M. Ackermann ◽  
J. Adams ◽  
J. A. Aguilar ◽  
...  

Author(s):  
Carsten Rott

AbstractThe dream of observing our universe through neutrinos is rapidly becoming a reality. More than three decades after the first observation of neutrinos from beyond our solar system associated with Supernova SN1987A, neutrino astronomy is in the midst of a revolution. Extraterrestrial neutrinos are now routinely detected, following the discovery of a high-energy diffuse astrophysical neutrino flux in 2013. The detection of a high-energy neutrino in coincidence with a flaring blazar in 2017 has brought the field rapidly into the multi-messenger science era. The latest developments in the field of neutrino astronomy are reviewed and prospects with current and future detectors discussed. Particular emphasis is put on domestic programs in neutrino astronomy and the possibility to construct a large neutrino observatory in Korea.


2020 ◽  
Vol 500 (4) ◽  
pp. 5614-5628
Author(s):  
A Albert ◽  
M André ◽  
M Anghinolfi ◽  
G Anton ◽  
M Ardid ◽  
...  

ABSTRACT Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through pγ interactions. In this work, ANTARES data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 per cent.


2019 ◽  
Vol 207 ◽  
pp. 02006
Author(s):  
Konstantinos Pikounis ◽  
Ekaterini Tzamariudaki ◽  
Christos Markou

KM3NeT is a research infrastructure housing the next generation neutrino detectors in the depths of the Mediterranean Sea. The ARCA detector, which is currently under construction, is optimized for neutrino searches from astrophysical sources as well as measurements of the diffuse high energy astrophysical flux. The unambiguous detection of neutrinos of extraterrestrial origin by IceCube has led to the first measurement of a high energy astrophysical neutrino flux. The cutting-edge technology used for the design and construction of KM3NeT Digital Optical Modules along with the properties of sea water allow for a measurement of the neutrino direction with an unpresidented resolution for both track and cascade events. Taking advantage of this angular resolution a method to differentiate track and shower events and a method to reject the atmospheric muon background from track-like events were developed and combined to select a sample of high energy starting events. An analysis for the discovery potential of KM3NeT/ARCA for a diffuse astrophysical neutrino flux using these events is presented.


2019 ◽  
Vol 622 ◽  
pp. L9 ◽  
Author(s):  
Nora Linn Strotjohann ◽  
Marek Kowalski ◽  
Anna Franckowiak

We describe a consequence of the Eddington bias which occurs when a single astrophysical neutrino event is used to infer the neutrino flux of the source. A trial factor is introduced by the potentially large number of similar sources that remain undetected; if this factor is not accounted for the luminosity of the observed source can be overestimated by several orders of magnitude. Based on the resulting unrealistically high neutrino fluxes, associations between high-energy neutrinos and potential counterparts or emission scenarios were rejected in the past. Correcting for the bias might justify a reevaluation of these cases.


Science ◽  
2018 ◽  
Vol 361 (6398) ◽  
pp. 147-151 ◽  
Author(s):  
◽  
Mark Aartsen ◽  
Markus Ackermann ◽  
Jenni Adams ◽  
Juan Antonio Aguilar ◽  
...  

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5σ evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Victor P. Gonçalves ◽  
Diego R. Gratieri ◽  
Alex S. C. Quadros

AbstractThe number of ultra-high energy neutrinos arriving at IceCube depends on the energy dependence of the astrophysical neutrino flux and neutrino cross-section. In this paper, we investigate the impact of different assumptions for the description of the QCD dynamics at high energies on the determination of the normalization $$\Phi _{Astro}$$ Φ Astro and spectral index $$\gamma $$ γ of the astrophysical neutrino flux. The distribution of neutrino events at the IceCube is estimated considering the DGLAP, BFKL, CGC and BBMT approaches and the best estimates for $$\Phi _{Astro}$$ Φ Astro and $$\gamma $$ γ are determined using a maximum likelihood fit comparing the predictions with the distribution of observed events at IceCube. Moreover, we also investigate if the increase in the effective exposure time expected in IceCube-Gen2 will to allow us to disentangle the QCD dynamical effects from the description of the astrophysical neutrino flux.


Sign in / Sign up

Export Citation Format

Share Document