scholarly journals Standard Model measurements at the High-Luminosity LHC with the CMS experiment

2019 ◽  
Author(s):  
Alexander Savin ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 171-195
Author(s):  
Anders Ryd ◽  
Louise Skinnari

Hardware-based track reconstruction in the CMS and ATLAS trigger systems for the high-luminosity upgrade of the LHC (HL-LHC) will provide unique capabilities. In this review, we present an overview of earlier track trigger systems at hadron colliders, in particular those at the Tevatron CDF and DØ experiments. We discuss the plans of the CMS and ATLAS experiments to implement hardware-based track reconstruction for the HL-LHC. Particular focus is placed on the track trigger capability of the upgraded CMS experiment. We discuss the challenges and opportunities of this novel capability, review the alternatives that were considered for its implementation, and discuss its expected performance. The planned track trigger systems for CMS and ATLAS have different goals, and we compare and contrast the two approaches.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 28
Author(s):  
Saranya Ghosh ◽  
on behalf of the CMS Collaboration

The highlights of the recent activities and physics results leading up to the summer of 2018 from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) are presented here. The CMS experiment has a very wide-ranging physics program, and only a very limited subset of the physics analyses being performed at CMS are discussed here, consisting of several important results from the analysis of proton-proton collision data at center-of-mass energy of 13 TeV. These include important analyses of Higgs boson physics, with the highlight being the first observation of the t t ¯ H production of the Higgs boson, along with analyses pertaining to precision standard model measurements, top quark physics, with the single top production cross-section measurement, and flavor physics, with the important observation of χ b (3P) states. Additionally, important searches for physics beyond the standard model are also presented.


Author(s):  
C. Amstutz ◽  
F. A. Ball ◽  
M. N. Balzer ◽  
J. Brooke ◽  
L. Calligaris ◽  
...  

2014 ◽  
Vol 29 (21) ◽  
pp. 1444004 ◽  
Author(s):  
Robert Fleischer

The rare decay [Formula: see text] plays a key role for the testing of the Standard Model. It is pointed out that the sizable decay width difference ΔΓsof the Bs-meson system affects this channel in a subtle way. As a consequence, its calculated Standard Model branching ratio has to be upscaled by about 10%. Moreover, the sizable ΔΓsmakes a new observable through the effective [Formula: see text] lifetime accessible, which probes New Physics in a way complementary to the branching ratio and adds an exciting new topic to the agenda for the high-luminosity upgrade of the LHC. Further probes of New Physics are offered by a CP-violating rate asymmetry. Correlations between these observables and the [Formula: see text] branching ratio are illustrated for specific models of New Physics.


1990 ◽  
Vol 05 (09) ◽  
pp. 667-674 ◽  
Author(s):  
V. BARGER ◽  
T. HAN

The production of two standard model Higgs bosons via the WW fusion process e+e− →[Formula: see text] would test the predicted HHH, HWW and HHWW couplings. At TeV energies this fusion cross section dominates over that from e+e− →ZHH and would give significant event rates for mH ≲ 1/2 MZ at high luminosity e+e− colliders. We evaluate the rates and present the dynamical distributions.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


Author(s):  
Yueling Yang ◽  
Mingfei Duan ◽  
Junliang Lu ◽  
Jinshu Huang ◽  
Junfeng Sun

Inspired by the potential prospects of high-luminosity dedicated colliders and the high enthusiasms in searching for new physics in the flavor sector at the intensity frontier, the [Formula: see text], [Formula: see text] and [Formula: see text] weak decays are studied with the perturbative QCD approach. It is found within the standard model that the branching ratios for the concerned processes are tiny, about [Formula: see text], and far beyond the detective ability of current experiments unless there exists some significant enhancements from a novel interaction.


Sign in / Sign up

Export Citation Format

Share Document