scholarly journals Trees with Four and Five Distinct Signless Laplacian Eigenvalues

2019 ◽  
Vol 25 (3) ◽  
pp. 302-313
Author(s):  
Fatemeh Taghvaee ◽  
Gholam Hossein Fath-Tabar

‎‎Let $G$ be a simple graph with vertex set $V(G)=\{v_1‎, ‎v_2‎, ‎\cdots‎, ‎v_n\}$ ‎and‎‎edge set $E(G)$‎.‎The signless Laplacian matrix of $G$ is the matrix $‎Q‎‎=‎D‎+‎A‎‎$‎, ‎such that $D$ is a diagonal ‎matrix‎%‎‎, ‎indexed by the vertex set of $G$ where‎‎%‎$D_{ii}$ is the degree of the vertex $v_i$ ‎‎‎ and $A$ is the adjacency matrix of $G$‎.‎%‎ where $A_{ij} = 1$ when there‎‎%‎‎is an edge from $i$ to $j$ in $G$ and $A_{ij} = 0$ otherwise‎.‎The eigenvalues of $Q$ is called the signless Laplacian eigenvalues of $G$ and denoted by $q_1$‎, ‎$q_2$‎, ‎$\cdots$‎, ‎$q_n$ in a graph with $n$ vertices‎.‎In this paper we characterize all trees with four and five distinct signless Laplacian ‎eigenvalues.‎‎‎

2016 ◽  
Vol 5 (2) ◽  
pp. 132
Author(s):  
Essam El Seidy ◽  
Salah Eldin Hussein ◽  
Atef Mohamed

We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.


2018 ◽  
Vol 6 (1) ◽  
pp. 323-342 ◽  
Author(s):  
S. Barik ◽  
D. Kalita ◽  
S. Pati ◽  
G. Sahoo

AbstractLet G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and signless Laplacian matrix of graphs resulting from various graph operations with special emphasis on corona and graph products. In most cases, we have described the eigenvalues of the resulting graphs along with an explicit description of the structure of the corresponding eigenvectors.


2015 ◽  
Vol 30 ◽  
pp. 812-826
Author(s):  
Alexander Farrugia ◽  
Irene Sciriha

A universal adjacency matrix U of a graph G is a linear combination of the 0–1 adjacency matrix A, the diagonal matrix of vertex degrees D, the identity matrix I and the matrix J each of whose entries is 1. A main eigenvalue of U is an eigenvalue having an eigenvector that is not orthogonal to the all–ones vector. It is shown that the number of distinct main eigenvalues of U associated with a simple graph G is at most the number of orbits of any automorphism of G. The definition of a U–controllable graph is given using control–theoretic techniques and several necessary and sufficient conditions for a graph to be U–controllable are determined. It is then demonstrated that U–controllable graphs are asymmetric and that the converse is false, showing that there exist both regular and non–regular asymmetric graphs that are not U–controllable for any universal adjacency matrix U. To aid in the discovery of these counterexamples, a gamma–Laplacian matrix L(gamma) is used, which is a simplified form of U. It is proved that any U-controllable graph is a L(gamma)–controllable graph for some parameter gamma.


2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


2019 ◽  
Vol 13 (06) ◽  
pp. 2050113 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul ◽  
H. S. Ramane

The eccentricity of a vertex [Formula: see text] in a graph [Formula: see text] is the maximum distance between [Formula: see text] and any other vertex of [Formula: see text] A vertex with maximum eccentricity is called a peripheral vertex. In this paper, we study the distance signless Laplacian matrix of a connected graph [Formula: see text] with respect to peripheral vertices and define the peripheral distance signless Laplacian matrix of a graph [Formula: see text], denoted by [Formula: see text]. We then give some bounds on various eigenvalues of [Formula: see text] Moreover, we define energy in terms of [Formula: see text] and give some bounds on the energy.


2015 ◽  
Vol 30 ◽  
pp. 605-612 ◽  
Author(s):  
Carla Oliveira ◽  
Leonado Lima ◽  
Paula Rama ◽  
Paula Carvalho

Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q_1(G) and q_2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S_n^+ the star graph with an additional edge. It is proved that inequality q_1(G)+q_2(G) \leq e(G)+3 is tighter for the graph S_n^+ among all firefly graphs and also tighter to S_n^+ than to the graphs K_k \vee K_{n−k} recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S_n^+ minimizes f(G) = e(G) − q_1(G) − q_2(G) among all graphs G on n vertices.


Sign in / Sign up

Export Citation Format

Share Document