Investigation of irradiated metal of WWER-type reactor internals after 45 years of operation. Part 1. Research program and cutting out of samples from pressure vessel internals

Author(s):  
B. Z. Margolin ◽  
A. Ya. Varovin ◽  
A. J. Minkin ◽  
D. A. Gurin ◽  
V. A. Glukhov

The program is presented for investigations of the metal of the most irradiated elements of the WWER-440 reactor of the Novovoronezh NPP Unit 3 decommissioned after 45 years of operation. The fragments (cylindrical samples) were cut out from various zones of the core baffle and segment of forming ring of core barrel.

Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmad Saka Falwa Guna ◽  
Fitria Ramadhani

This research was based on the limitations of the human mind itself in providing and obtaining reasonable explanations, because at that time the desire to know something was obstructed from various myths which existedin that society so that myths were embedded in human mind. The focus of this research was on the methodology of the Imre Lakatos research program. The purpose of this study was to determine the process of research program methodology from Imre Lakatos. The method used in this research was library research, where the researchers looked for and read sources that match the title to be studied, such as books, articles, writings and journals that were relevant.The results of this study in the Imre Lakatos research program methodology included: First, the core (hardcore) functions as a negative heuristic. Second, the protective-belt which consisted of auxiliary hypotheses in the initial conditions. Third, a series of theories (a series theory), theory linkages where the next theory was the result of the auxiliary clauses added from the previous theory.


Author(s):  
Matthew D. Snyder ◽  
Tama´s R. Liszkai ◽  
Anne Demma

Pressurized water reactor (PWR) internals components can experience material aging and degradation due to irradiation. The purpose of the functionality analysis is to provide a best-estimate evaluation of the reactor internals core barrel assembly for materials degradation to see if the components retain their function. The evaluation uses an irradiated material-specific constitutive model for use in a finite element analysis [1] representing the current state of knowledge for plasticity, creep, stress relaxation, void swelling, and embrittlement. This constitutive model is a function of temperature and fluence. The analysis focuses on finding the integrated effects of material aging combined with steady-state operational characteristics of the reactor internals. In order to evaluate the potential failure mechanisms of the core barrel assembly, finite element models were developed capable of representing the complex interactions between the components. The goal of this specific analysis is to characterize the potential failure modes, spatial and chronological distribution of potential component failures for a representative model of the Babcock & Wilcox-type (B&W) designed plants. Evaluation of the reactor vessel internals for materials aging degradation involves three analytical calculations. Radiation calculations of the core provide essential information on radiation dose and heat rates of the internals. The computational fluid dynamics domain (CFD) allows evaluation of the internals temperatures through conjugate heat transfer (CHT) analysis coupled with coolant flow. Detailed structural analysis of the internals components and bolted connections is the third major physics field involved, which facilitates the development of operating stress fields within the internals. Structural analysis was performed as two parts. First, a global structural model of the core barrel assembly was used to represent the interaction of components of the core barrel assembly during 60 years of operation. The global model does not include detail of the areas of stress concentration within bolted connections. Therefore local models of selected bolts were developed. Results of both the global and local models were used as a basis for evaluating age-related effects. The description of the functionality analysis for the B&W designed RV internals is divided into three papers. Part I was presented in PVP-2008 [2] and included a description of the overall methodology with special attention to CFD-CHT evaluations. Part II, to be presented at PVP 2009 [2] describes global structural finite element models. Part III, presented in this paper, presents a description of local models of bolted connections, results, and conclusions.


Sign in / Sign up

Export Citation Format

Share Document