CDBA based current instrumentation amplifier

Author(s):  
Priyanka Gupta ◽  
Kunal Gupta ◽  
Neeta Pandey ◽  
Rajeshwari Pandey

This paper presents a novel method to realize a current mode instrumentation amplifier (CMIA) through CDBA (Current difference Buffered Amplifier). It employs two CDBAs and two resistors to obtain desired functionality. Further, it does not require any resistor matching. The gain can be set according to the resistor values. It offers high differential gain and a bandwidth, which is independent of gain. The working of the circuit is verified through PSPICE simulations using CFOA IC based CDBA realization.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A new active building block for analog signal processing, namely, differential difference current conveyor transconductance amplifier (DDCCTA), is presented, and performance is checked through PSPICE simulations which show the usability of the proposed element is up to 201 MHz. The proposed block is implemented using 0.25 μm TSMC CMOS technology. Some of the applications are presented using the proposed DDCCTA, namely, a voltage mode multifunction filter, a current mode universal filter, an oscillator, current and voltage amplifiers, and grounded inductor simulator. The feasibility of DDCCTA and its applications is confirmed via PSPICE simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Neeta Pandey ◽  
Rajeshwari Pandey

This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA) and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.


2016 ◽  
Vol 87 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Gregorio Zamora-Mejía ◽  
Jaime Martínez-Castillo ◽  
José Miguel Rocha-Pérez ◽  
Alejandro Díaz-Sánchez

Author(s):  
Chunlei Wu ◽  
Suying Yao

Abstract Lock-in IR-OBIRCH analysis, as a kind of static thermal laser stimulation (S-TLS) technique, is very effective to isolate a fault for the parametric failure cases. However, its capability is limited to localize a defect when the IC is operated under a defined operating condition. Whereas the dynamic thermal laser stimulation (D-TLS) technique is good at locating a fault while the IC is operated under some functions to activate the failure. In this paper, a novel method is presented to realize DTLS just by Lock-in IR-OBIRCH assisted with a Current Detection Probe Head. Two cases are studied to demonstrate the effectiveness of this method.


Author(s):  
Yong-An Li

Background: The original filter including grounded or virtual ground capacitors can be synthesized by using the NAM expansion. However, so far the filters including floating capacitor, such as Sallen-Key filter, have not been synthesized by means of the NAM expansion. This is a problem to be researched further. Methods: By using the adjoint network theory, the Sallen-Key filter including floating capacitor first is turned into a current-mode one, which includes a grounded capacitor and a virtual ground capacitor. Then the node admittance matrix, after derived, is extended by using NAM expansion. Results: At last, one VDTA Sallen-Key filter is received. It employs single compact VDTA and two grounded capacitors. Conclusion: A Butterworth VDTA second-order frequency filter based on Sallen-Key topology with fo = 100kHz, HLP = -HBP=1, is designed.


Author(s):  
S. Iturriaga-Medina ◽  
P. R. Martinez-Rodriguez ◽  
G. Escobar ◽  
J. C. Mayo-Maldonado ◽  
J. E. Valdez-Resendiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document