Optimal Allocation of Different Types of DG Sources Considering the Impact on Power Losses and Voltage in Distribution Networks

2013 ◽  
Vol 860-863 ◽  
pp. 2441-2446
Author(s):  
Xiao Ping Zhang ◽  
Xu Dong Song ◽  
Nan Hua Yu ◽  
Jong Cong Chen ◽  
Lei Lei Zhang

As the distribution energies are becoming the future trend to solve the tense fossil fuel supplying and environmental issues, further research on the management of DGs connected to system is necessary. Management of reactive power resources is vital for stable and secure operation of power systems in power losses and voltage quality. Base on this, an optimal power allocation strategy of different types of DG units which result in the minimum line losses and relatively good voltage profile is proposed in this paper.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3219 ◽  
Author(s):  
Martin Ćalasan ◽  
Tatjana Konjić ◽  
Katarina Kecojević ◽  
Lazar Nikitović

In the current age, power systems contain many modern elements, one example being Flexible AC Transmission System (FACTS) devices, which play an important role in enhancing the static and dynamic performance of the systems. However, due to the high costs of FACTS devices, the location, type, and value of the reactive power of these devices must be optimized to maximize their resulting benefits. In this paper, the problem of optimal power flow for the minimization of power losses is considered for a power system with or without a FACTS controller, such as a Static Var Compensator (SVC) device The impact of location and SVC reactive power values on power system losses are considered in power systems with and without the presence of wind power. Furthermore, constant and variable load are considered. The mentioned investigation is realized on both IEEE 9 and IEEE 30 test bus systems. Optimal SVC allocation are performed in program GAMS using CONOPT solver. For constant load data, the obtained results of an optimal SVC allocation and the minimal value of power losses are compared with known solutions from the literature. It is shown that the CONOPT solver is useful for finding the optimal location of SVC devices in a power system with or without the presence of wind energy. The comparison of results obtained using CONOPT solver and four metaheuristic method for minimization of power system losses are also investigated and presented.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Author(s):  
Mohammed Hamouda Ali ◽  
Mohammed Mehanna ◽  
Elsaied Othman

The impact of the renewable distributed generations (RDGs), such as photovoltaic (PV) and wind turbine (WT) systems can be positive or negative on the system, based on the location and size of the DG. So, the correct location and size of DG in the distribution network remain an obstacle to achieving their full possible benefits. Therefore, the future distribution networks with the high penetration of DG power must be planned and operated to improve their efficiency. Thus, this paper presents a new methodology for integrated of renewable energy-based DG units with electrical distribution network. Since the main objective of the proposed methodology is to reduce the power losses and improve the voltage profile of the radial distribution system (RDS). In this regard, the optimization problem was formulated using loss sensitivity factor (LSF), simulated annealing (SA), particle swarm optimization (PSO) and a combination of loss sensitivity index (LSI) with SA & PSO (LSISA, LSIPSO) respectively. This paper contributes a new methodology SAPSO, which prevents the defects of SA & PSO. Optimal placement and sizing of renewable energy-based DG tested on 33-bus system. The results demonstrate the reliability and robustness of the proposed SAPSO algorithm to find the near-optimal position and size of the DG units to mitigate the power losses and improve the radial distribution system's voltage profile.


2018 ◽  
Vol 8 (5) ◽  
pp. 3445-3449 ◽  
Author(s):  
P. Balamurugan ◽  
T. Yuvaraj ◽  
P. Muthukannan

This paper deals with a new approach implemented to decrease power losses and improve voltage profile in distribution networks using Distribution STATic COMpensator (DSTATCOM). DSTATCOM location can be determined by the voltage stability index (VSI) and sizing can be identified by nature inspired, recently developed whale optimization algorithm (WOA). To check efficacy, the proposed technique is tested on two standard buses: Indian rural electrification 28-bus and IEEE 69-bus distribution systems. Obtained results show that optimal allocation of DSTATCOM effectively reduces power losses and improves voltage profile.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Jain ◽  
Ganga Agnihotri ◽  
Shilpa Kalambe ◽  
Renuka Kamdar

This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm.


TecnoLógicas ◽  
2018 ◽  
Vol 21 (42) ◽  
pp. 63-78
Author(s):  
Edwin H. Lopera-Mazo ◽  
Jairo Espinosa

This paper compares a conventional Secondary Voltage Regulation (SVR) scheme based on pilot nodes with a proposed SVR that takes into account average voltages of control zones. Voltage control significance for the operation of power systems has promoted several strategies in order to deal with this problem. However, the Hierarchical Voltage Control System (HVCS) is the only scheme effectively implemented with some relevant applications into real power systems.The HVCS divides the voltage control problem into three recognized stages. Among them, the SVR is responsible for managing reactive power resources to improve network voltage profile. Conventional SVR is based on dividing the system into some electrically distant zones and controlling the voltage levels of some specific nodes in the system named pilot nodes, whose voltage levels are accepted as appropriate indicators of network voltage profile.The SVR approach proposed in this work does not only consider the voltage on pilot nodes, but it also takes the average voltages of the defined zones to carry out their respective control actions. Additionally, this innovative approach allows to integrate more reactive power resources into each zone according to some previously defined participation factors.The comparison between these strategies shows that the proposed SVR achieves a better allocation of reactive power in the system than conventional SVR, and it is able to keep the desired voltage profile, which has been expressed in terms of network average voltage.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Saad Ouali ◽  
Abdeljabbar Cherkaoui

In this paper, an alternative strategy for real-time control of active distribution network voltage is developed, not by controlling the bus voltage as in the various centralized, decentralized, and local approaches presented in literature but rather by only eliminating the impact produced by active and reactive power of distributed generation (DG) units on the voltage of all network nodes and keeping the traditional voltage control systems dealing with the same constraints of passive systems. In literature, voltage deterioration introduced by DGs has been reported as one of the main obstacles for the interconnection of large amounts of DG units to the existing networks. In this paper, the novel control strategy is based on a sensitivity formula developed to calculate the compensation needed for additional distributed flexible AC transmission system (D-FACTS) devices to push and pull the exact reactive power and to eliminate the impact produced by DGs on the network voltage profile. The criteria of the allocation of the var devices and the required network reinforcement are developed in this paper, considering all possible topology structures, and an innovative codification method is introduced to reduce the needed computation time and communication data to actualize the sensitivity coefficients and get the proposed control approach flexible with network topology reconfiguration. The risk of the conflict of the proposed control system with the traditional voltage equipment is reduced due to the fast capability of D-FACTS devices to regulate their reactive power in finer granularity. A case study of two meshed IEEE 15-bus feeders is introduced to compare the voltage behavior with and without the presence of DG units and to evaluate the total system losses. The proposed method could be used for the interconnection of the first generation units in emerging networks, which does not yet have an active voltage control strategy, as it could be used for DG units not able to be connected to existing centralized control systems and it could also be used as the principal voltage control strategy, with the extension for several neighboring units and the preservation of the traditional voltage control systems.


2018 ◽  
Vol 69 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Ghaeth Fandi ◽  
Famous Omar Igbinovia ◽  
Josef Tlusty ◽  
Rateb Mahmoud

Abstract A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.


2017 ◽  
Author(s):  
◽  
Adebiyi Abayomi Aduragba

Voltage instability and increased power loss on transmission lines are major challenges in power transmission due to ever increasing load growth. This work investigates the effect of Static Synchronous Compensator (STATCOM) to mitigate power losses and enhance the voltage stability of a transmission system. STATCOM, a shunt-connected power electronic device, operate as a Voltage Source Converter (VSC) to improve power transfer capacity of transmission lines by injecting a set of three-phase balanced sinusoidal current with controllable magnitude and phase angle into the transmission lines to regulate the line voltage and compensate for reactive power at the Point of Common Coupling (PCC). To validate the capacity of STATCOM in this light, a modified model of IEEE 14 bus test system was simulated using DIgSILENT PowerFactory v15. Four different load profiles were included by increasing the base load in a step of 10%. In each case, power flow was run with and without STATCOM incorporated in the network with a view to determine the impact of STATCOM on bus voltage and transmission line losses. The simulation results are obtained were recorded and analyzed. It is noted that there was sufficient improvement in the new voltage profile obtained for the weak buses of the system, the active and reactive power losses were mitigated by 17.73% and 24.80% respectively when STATCOM was incorporated at normal load. The results showed that STATCOM could give quick voltage support to reduce the likelihood of voltage collapse and mitigate power losses along the transmission lines. Reduction of reactive power losses along the lines is higher than the active power losses resulting in the improvement of the voltage profile as the device is connected to the system.


Sign in / Sign up

Export Citation Format

Share Document