scholarly journals Physical and mineral characterisation of natural zeolites from Taiz, South-western Yemen

2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 744-749
Author(s):  
N.A.S. Al Muhammadi ◽  
◽  
A. Hussin ◽  

Aim: To investigate the physical, minerals and geochemical composition of Taiz natural zeolites. Methodology: Each zeolite sample were assessed for its characterization via optical microscopy, X-ray Diffraction (XRD) techniques, X-ray Fluorescence Methods (XRF), Inductively Coupled Plasma- Optical Emission Spectrometry (ICP-OES) to examine their mineral composition and geochemistry properties. Further, physical properties like pH, electrical conductivity (EC), plasticity, specific surface area, water content and brightness were estimated by standard methods. Results: Natural zeolite in the studied area occurs within pyroclast of volcanic tuffs. It consists mainly of perlite and rhyolite as lenses grey to light green in color with fine granulation texture. Petrography analysis showed that the Taiz zeolites are mainly classified as clinoptilolite – heulandite and are mixed with various types of others zeolite minerals such as analcime, chabazite and mazzite. Small amounts of impurities like K-.feldspar (orthoclase) and clay mineral such as montmorillonite, kaolinite and illite were also detected. The mean ratio of SiO2:Al2O3 for representative zeolite sample from the study area ranged between of 6.34-6.98. Interpretation: Zeolites showed fairly medium to high brightness and on comparing with the commercial zeolites, Taiz zeolite showed significant industrial potential to be used as a filler in paper industry.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3267
Author(s):  
Gigliola Lusvardi ◽  
Francesca Sgarbi Stabellini ◽  
Roberta Salvatori

(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials.


2015 ◽  
Vol 6 ◽  
pp. 1957-1969 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Sylwia Kusnieruk ◽  
Tadeusz Chudoba ◽  
Stanislaw Gierlotka ◽  
Witold Lojkowski ◽  
...  

Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS) technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999%) and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD), helium pycnometry density, specific surface area (SSA), inductively coupled plasma optical emission spectrometry (ICP-OES), extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.


2020 ◽  
Author(s):  
Daniela Novembre ◽  
Domingo Gimeno ◽  
Alessandro Del Vecchio

Abstract This work focuses on the hydrothermal synthesis of Na-P1 zeolite by using a kaolinite rock coming from Romana (Sassari, Italy). The kaolin is calcined at a temperature of 650 °C and then mixed with calculated quantities of NaOH. The synthesis runs are carried out at ambient pressure and at variable temperatures of 65 ° and 100 °C. For the first time compared to the past, the Na-P1 zeolite is synthesized without the use of additives and through a protocol that reduces both temperatures and synthesis times. The synthesis products are analysed by X-ray diffraction, high temperature X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductively coupled plasma optical emission spectrometry. The cell parameters are calculated using the Rietveld method. Density and specific surface area are also calculated. The absence of amorphous phases and impurities in synthetic powders is verified through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.The results make the experimental protocol very promising for an industrial transfer.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 465 ◽  
Author(s):  
Roberto da Conceição Ribeiro ◽  
Patrícia Marques Ferreira de Figueiredo ◽  
Daniel Silva Barbutti

Master Valentim’s fountain has become an important historical patrimony for Brazil, being portrayed by famous artists, among them Jean-Baptiste Debret. In 1938, it was registered as cultural heritage by the Brazilian National Historical and Artistic Heritage Institute (IPHAN), and in 1990 it was subjected to excavation and restoration works. The fountain was built in Gneiss and Lioz limestone, with metallic plates and mortar connecting the Gneiss blocks. Currently, deteriorations in the fountain stones can be observed, such as light stains and some aesthetic modifications caused by inadequate restorations. Petrography, X-ray fluorescence (XRF), XRD, physical properties, colorimetry, electrical conductivity, inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and TGA were performed in order to characterize the Gneiss blocks, the metallic plates, and the stones used in previous restorations, as well as light stains observed on the Gneiss blocks. The petrography and XRD analyses inferred that the light stains may have been caused by the formation of an insoluble salt as a result of the association of the lead from the plates with other elements. The XRD analysis on the light staining area indicated the presence of cerussite (PbCO3) and anglesite (PbSO4), which are the probable cause of the light stains. The SEM-EDX results suggested that sulfur is the main element associated to lead.


Sign in / Sign up

Export Citation Format

Share Document