scholarly journals Antifungal activity of medicinal plants, Adathoda vasica and Andrographis paniculata against Colletotrichum capsici, the chilli fruit rot pathogen

2021 ◽  
Vol 42 (6) ◽  
pp. 1461-1469
Author(s):  
K. Priya ◽  
◽  
G. Thiribhuvanamala ◽  
C. Sangeetha ◽  
A. Kamalakannan ◽  
...  

Aim: The objective was formulated to screen the extracts of medicinal plants for tapping the antimicrobial activity against Collectotrichum capsici. Further, the work was planned to characterize and identify the nature of antimicrobial compounds and their functional groups. Methodology: Extracts of eleven medicinal plants were tested against the mycelial growth and spore germination of C. capsici under in-vitro conditions. Based on these results, the potential plant extracts of A. vasica and A. paniculata found effective against C. capsici were assayed for the presence of antimicrobial metabolites through TLC, GC-MS and FTIR analysis. Results: Among the medicinal plants screened, the crude extracts from Adathoda vasica and Andrographis paniculata inhibited mycelial growth and spore germination of C. capsici by 53.33% and 38.14%, respectively, under in-vitro conditions. GC-MS analysis of ethyl acetate extracts of A. vasica indicated antimicrobial compound, 1H-Pyrrolo[2,1-b]quinazolin-9-one,3-hydroxy-2,3-dihydro- and A. paniculata showed the presence of two compounds, docosahexaenoic acid and oleic acid. Similarly, FTIR analysis revealed esters, alcohols, and halide groups, which are known antimicrobials. Interpretation: The medicinal plants, A. paniculata and A. vasica possessed antimicrobial metabolites, which was responsible for inhibiting the mycelial growth and spore germination of C. capsici.

2017 ◽  
Vol 70 ◽  
pp. 112-119 ◽  
Author(s):  
P.N. Wood ◽  
B.M. Fisher

Phlyctema vagabunda (syn: Neofabraea alba) is a plant pathogenic fungus that causes bull’s eye rot on apples and pears. Phlyctema vagabunda fruit infections occur in orchards predominantly pre-harvest, and eventually express as a fruit rot after 4—5 months of cool storage. Twelve fungicides (captan, carbendazim, copper hydroxide, cyprodinil, difenoconazole, dithianon, dodine, isopyrazam, metiram, lime sulphur, sulphur and trifloxystrobin) were tested in vitro for their effects on spore germination and mycelial growth of P. vagabunda. Spore germination was inhibited by metiram, captan, dodine, dithianon, lime sulphur, carbendazim and isopyrazam, in order of effectiveness. Carbendazim, isopyrazam, difenoconazole and cyprodinil, in order of effectiveness, inhibited mycelial growth when used at label rates. Wettable sulphur was ineffective in both assays. On detached apple fruit, carbendazim, cyprodinil, trifloxystrobin and isopyrazam (in order of effectiveness) inhibited lesion development.


2017 ◽  
Vol 4 (8) ◽  
pp. 265-272
Author(s):  
Shazia Parveen ◽  
Abdul Hamid Wani ◽  
Mohd Yaqub Bhat ◽  
Tariq Ahmad Wani ◽  
Abdul Rashid Malik

Pears Pyrus communis L. collected from different sites of Kashmir Valley were found infected with Penicillium glaucum causing Penicillium rot. The diseased fruits appears light tan to dark brown. The decayed tissue becomes soft, watery and the lesion has a very sharp margin between diseased and healthy tissues. Decayed fruit has an earthy, musty odor. The pathogen was isolated and cultured on PDA medium for further fungal morphological observation and confirming its pathogenicity according to Koch’s postulates. Results of morphological data and pathogenicity test showed that the pears were infected by Penicillium glaucum Link resulting in Penicillium rot of pears. To our knowledge, it is the first report of pear fruit rot caused by P. glaucum in India. Study was also undertaken for the management of Penicillium rot of pear with some fungicides. It was revealed from the study that different concentration of fungicides brought about significant reduction in the mycelial growth and spore germination of Penicillium glaucum under in vitro conditions. Amongst the tested fungicides, carbendazim proved highly effective in inhibiting the mycelial growth and spore germination of Penicillium glaucum followed by hexaconozole, bitertanol and myclobutanil respectively. Higher concentration proved effective than lower concentrations.


2021 ◽  
Vol 53 (1) ◽  
pp. 234-244
Author(s):  
Ramon Jaime Holguín-Peña ◽  
Diana Medina-Hernández ◽  
Grecia Vázquez-Islas ◽  
Francisco Nieto-Navarro ◽  
Edgar Omar Puente

Certified-organic farming systems in Baja California Peninsula and Northwest Mexico are nationally and globally recognized, especially due to the production of vegetables and aromatic herbs under protected agriculture systems. Based on the background of some species of the flora of Baja California Sur (BCS) to inhibit a diversity of microorganisms, the effect of 22 medicinal plants of the region was explored to know the in vitro activity against the fungus Fusarium oxysporum f. sp. basilici isolated from basil (Ocimum basilicum L.). The plants processed as crude ethanolic and aqueous extracts were analyzed in duplicate (three replicates) evaluating the inhibition of mycelial growth and spore germination. In mycelial inhibition test, all plants extracts (1000 mg L-1) showed an effectiveness of 11 to 40% to inhibit F. oxysporum. The most effective plant extracts according to 50% effective inhibition dose (ED50), were Larrea tridentata, Hymenoclea monogyra and Lippia palmeri with an ED50 of 220, 303 and 3000 mg L-1, respectively. Tukey’s PostHoc tests indicated that H. monogyra and L. tridentata are ten times (ED50 <300 mg L-1) more effective than L. palmeri (ED50 3000 mg L-1). In addition, the dose-response trend analyzes according to the logarithmic-logistic model (drc packages), showed the maximum slope values ​​between 100 and 1000 mg L-1. In the spore germination inhibition tests, most ethanolic extracts (5000 mg L-1) showed an effectiveness between 21 and 80%. The results of this study demonstrated that the inhibitory potential of these plants used in BCS traditional medicine are a viable alternative for the control of F. oxysporum f. sp. basilici in organic basil production systems. Highlights 22 medicinal native plants from the Baja California peninsula can effectively inhibit (in vitro) oxysporum f. sp. basilica. The most effective species were Larrea tridentata, Hymenoclea monogyra and Lippia palmeri with a mycelial growth inhibition (ED50) of 220, 300 and 3000 mg L-1, respectively. In vitro effectiveness of Fusarium-growth inhibition of medicinal plants of BCS were in ED50 ranges from 220 to 3000 mg L-1. Creosote bush (L. tridentata) extract at a dose of 5000 mg L-1 can inhibit the fungal sporulation by up 80%. The ethanol-aqueous extract of the medicinal plants of BCS have the potential to be used for long-term control of the fusariosis disease in basil.


Author(s):  
Harleen Kaur ◽  
Monique DeSouza ◽  
Raghuwinder "Raj" Singh

Boxwood is one of the most common and widely planted perennial ornamentals in both home gardens and commercial landscapes. Recently reported boxwood dieback, a fungal disease caused by Colletotrichum theobromicola, has been spreading at an alarming rate within the U.S. Boxwood breeders, nursery growers, and landscape professionals have shown great concerns regarding the lack of effective management practices. Therefore, the primary objectives of this study were to devise effective disease management strategies including screening cultivars to determine their susceptibility to boxwood dieback and screening various fungicides to determine their effectiveness in managing the disease. Host range studies were conducted by screening a wide variety of boxwood cultivars under greenhouse conditions. Although, boxwood cultivar ‘Little Missy’ showed much delayed symptom expression as compared to rest of the cultivars but none of the 11 cultivars were found to be resistance to boxwood dieback. In vitro screening of nine fungicides was conducted to determine mycelial growth as well as spore germination inhibition of eight isolates of C. theobromicola collected from eight states in the U.S. Of the nine fungicides, difenoconazole+pydiflumetofen showed maximum mycelial growth and spore germination inhibition at 1 ppm active ingredient followed by fluxapyroxad+pyraclostrobin, and pyraclostrobin+boscalid at 5 ppm active ingredient. Azoxystrobin+benzovindiflupyr significantly inhibited mycelial growth at 1 ppm but reduced spore germination at 10 ppm active ingredient. This study provides the boxwood industry professionals with critical and applied information pertaining to host susceptibility and fungicide efficacy to effectively mitigate boxwood dieback and to reduce its further spread.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1075-1079 ◽  
Author(s):  
C. L. Xiao ◽  
Y. K. Kim ◽  
R. J. Boal

Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple grown in Washington State. The objective of this study was to develop chemical-based mitigation measures for Sphaeropsis rot in stored apple fruit. To determine in vitro sensitivity of S. pyriputrescens to the three registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil, 30 isolates of S. pyriputrescens obtained from various sources were tested for mycelial growth and conidial germination on fungicide-amended media. Golden Delicious apple fruit were inoculated with the pathogen in the orchard at 2 or 5 weeks before harvest. After harvest, fruit were either nontreated or dipped in thiabendazole, fludioxonil, or pyrimethanil solutions, stored at 0°C, and monitored for decay development for up to 9 months after harvest. The mean effective concentration of a fungicide that inhibits mycelial growth or spore germination by 50% relative to the nonamended control (EC50) values of thiabendazole, fludioxonil, and pyrimethanil on mycelial growth were 0.791, 0.0005, and 2.829 μg/ml, respectively. Fludioxonil and pyrimethanil also were effective in inhibiting conidial germination of the fungus with EC50 values of 0.02 μg/ml for fludioxonil and 5.626 μg/ml for pyrimethanil. All three postharvest fungicides applied at label rates immediately after harvest were equally effective in controlling Sphaeropsis rot in stored apple fruit, reducing disease incidence by 92 to 100% compared with the nontreated control. The results indicated that Sphaeropsis rot may be effectively controlled by the currently registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil.


Author(s):  
Clenilda Tolentino Bento da Silva ◽  
Alessandra Keiko Nakasone ◽  
Walkymário de Paulo Lemos ◽  
Osmar Alves Lameira ◽  
Luana Cardoso de Oliveira

Aims: This work aimed to evaluate the antimicrobial effects of 14 alcoholic extracts of medicinal plants on the mycelial growth of Colletotrichum gloeosporioides, Fusarium oxysporum f. sp. passiflorae, Fusarium solani and Rhizoctonia solani. Those are fungi that cause diseases in Passiflora edulis. Study Design: With the obtained data the mycelial growth rate index (MGRI) was calculated, afterwards the analysis of variance was performed and the means were compared by the Scott-Knott test at 5% probability. Place and Duration of Study: Plant Pathology Laboratory, Embrapa Eastern Amazon, Belém, Pará, Brazil, between May 2014 and April 2015. Methodology: The extracts were prepared with 1.0 g of powdered plant material and 10 mL of commercial ethyl alcohol 92.8º (0.1 g mL-1) under constant agitation in an orbital shaker at 200 rpm for 20 minutes. They were then kept in the refrigerator for 24 hours at rest. The extracts were centrifuged and filtered on Millipore membranes with 0.22 µm porosity. The tests with the phytopathogenic fungi were carried out in vitro with the alcoholic extracts at 1% concentration. The experimental design was completely randomized with 15 treatments and 5 replicates. Results: All the extracts reduced the growth of the fungi C. gloeosporioides. The extracts the Eucalyptus angulosa, Lippia alba, Zingiber officinale, Cymbopagon citratus, Azadirachta indica, Plectranthus barbathus, Hibiscus sabdariffa, Aloe vera, Pedilanthus tithymaloides, Mansoa alliacea and Chenopodium ambrosioides reduced the mycelial growth of F. oxysporum f. sp. passiflorae. Only the extract of E. angulosa presented reduction in the growth of F. solani. Meanwhile the extracts of E. angulosa, Z. officinale, L. alba, M. alliacea and P. barbathus reduced the mycelial growth of R. solani. Conclusion: All extracts presented antimicrobial potential, being that the extract of E. angulosa reduced the mycelial growth of all the evaluated fungi.


2019 ◽  
Vol 11 (17) ◽  
pp. 167
Author(s):  
Vanessa P. Gonçalves ◽  
Cândida R. J. de Farias ◽  
Victoria Moreira-Nunêz ◽  
Renata Moccellin ◽  
Viviana Gaviria-Hernández ◽  
...  

The objective of this work was to evaluate the fungitoxic effect of the agrochemicals used in the cultivation of soybean and irrigated rice on entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae by means of the mycelial growth, sporulation and spore germination. The isolates were inoculated in potato-dextrose-agar (PDA) medium containing the pesticides and exposed to spraying with the products. It was observed that chlorantraniliprole produced the best results regarding and was compatible with the two methods of contact of the product with the fungi. Flubendiamide it&rsquo;s very toxic to fungi, producing 100% inhibition when incorporated into the medium, when by spraying, the fungus M. anisopliae got mycelial growth. Etofenprox and thiamethoxam changed their toxity classification according to the method of contact with product, was moderately compatible to B. bassiana and compatible to M. anisopliae and spinosad showed more compatibility with M. anisopliae than B. bassiana and was classified as compatible. Among fungicides the tricyclazole was the only compatible with the fungus by the spray method. The results showed that in vitro agrochemicals such as tricyclazole, thiamethoxam, flubendiamide and etofenprox are harmful to fungi. It was found that environmental interference could minimize the effects on organisms, especially when the chemicals are applied by spraying.


Sign in / Sign up

Export Citation Format

Share Document