scholarly journals Effect of Agrochemicals Used in the Cultivation of Soybean and Irrigated Rice on Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok

2019 ◽  
Vol 11 (17) ◽  
pp. 167
Author(s):  
Vanessa P. Gonçalves ◽  
Cândida R. J. de Farias ◽  
Victoria Moreira-Nunêz ◽  
Renata Moccellin ◽  
Viviana Gaviria-Hernández ◽  
...  

The objective of this work was to evaluate the fungitoxic effect of the agrochemicals used in the cultivation of soybean and irrigated rice on entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae by means of the mycelial growth, sporulation and spore germination. The isolates were inoculated in potato-dextrose-agar (PDA) medium containing the pesticides and exposed to spraying with the products. It was observed that chlorantraniliprole produced the best results regarding and was compatible with the two methods of contact of the product with the fungi. Flubendiamide it’s very toxic to fungi, producing 100% inhibition when incorporated into the medium, when by spraying, the fungus M. anisopliae got mycelial growth. Etofenprox and thiamethoxam changed their toxity classification according to the method of contact with product, was moderately compatible to B. bassiana and compatible to M. anisopliae and spinosad showed more compatibility with M. anisopliae than B. bassiana and was classified as compatible. Among fungicides the tricyclazole was the only compatible with the fungus by the spray method. The results showed that in vitro agrochemicals such as tricyclazole, thiamethoxam, flubendiamide and etofenprox are harmful to fungi. It was found that environmental interference could minimize the effects on organisms, especially when the chemicals are applied by spraying.

2001 ◽  
Vol 44 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Edson Hirose ◽  
Pedro M. O. J. Neves ◽  
João A. C. Zequi ◽  
Luís H. Martins ◽  
Cristiane H. Peralta ◽  
...  

The in vitro fungitoxic effect of three biofertilizers, E.M.-4, Multibion <FONT FACE=Symbol>Ô</FONT> and Supermagro used in organic agriculture and the neem oil (Azadirachta indica A. Juss) on the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana was studied. These products were mixed in a medium where the two fungi were inoculated, and germination, vegetative growth and conidiogenesis were assessed. The biofertilizers Supermagro and E.M.- 4 showed to be less toxic for the two fungi whereas Multibion<FONT FACE=Symbol>Ô</FONT> caused major inhibition on M. anisopliae, with reductions in germination (-37.74%), colony diameter (-30.26%) and conidiogenesis (-42.62%). Neem oil promoted a larger negative effect on B. bassiana, inhibiting germination (-45.27%), colony diameter (-36.62%) and conidiogenesis (-84.93%).


2012 ◽  
Vol 58 (1) ◽  
pp. 101-111
Author(s):  
Anna Sapieha-Waszkiewicz ◽  
Barbara Marjańska-Cichoń ◽  
Ryszard Miętkiewski ◽  
Mieczysław Żurek

The growth colonies' morphology and sporulation of entomopathogenic fungi was estimated on Sabouraud medium containing botanical fungicides (Bioczos liquid and Biosept 33 SL), and synthetic ones (Teldor 500 SC and Sumilex 500 SC). Entomopathogenic fungi (<i>Beauveria bassiana</i> (Balls.) Vuill., <i>Metarhizium anisopliae</i> (Metsch.) Sorok, and <i>Paecilomyces fumosoroseus</i> (Wize) Brown et Smith.), were isolated from soil by means of <i>Galleria mellonella</i> larvae as baits. Isolates Bb I, Ma I, Pf I derivered from herbicide fallow from apple orchard and isolates Bb II, Ma II and Pf II from arable field adjacent to orchard. Fungicides were added to Sabouraud medium at the following concentrations: A-recommended dose, B-10-times lower than the recommended, C-100-times lower than the recommended. The growth of colonies their morphological changes and sporulations were estimated after 5 and 20 days. The same parametrs were observed when fungi were transfered from the medium containing fungicides on the medium with out fungicides. From botanical fungicides Bioczos liquid inhibited fungal growth more than Biosept 33 SL. Both of fungicides were most toxic to fungi at concentration A. Both of <i>P. fumosoroseus</i> isolates were the most sensitive to Bioczos liquid and <i>M. anisopliae</i> to Biosept 33 SL. All concentrations of synthetic fungicides (Sumilex 500 SC, Teldor 500 SC) restricted growth of <i>B. bassiana</i> and <i>M. anisopliae</i> isolates more from arable soil than from herbicide fallow but opposite reaction was found with respect to <i>P. fumosoroseus</i>.


The current study examined the potential use of entomopathogenic fungi to control infestation of Rhipicephalus sanguineus. Examination of 514 dogs admitted to veterinary clinics in Egypt revealed that 67.5% were infested with R. sanguineus. Two hundred and sixty adult ticks were collected. Beauveria bassiana and Metarhizium anisopliae were then tested for their effect on these ticks. The in vitro effect of different concentrations of B. bassiana on engorged females, unfed females, fed males, eggs, larvae, and nymphs was strong for all three concentrations of B. bassiana compared with controls (P<0.05) and white fungal colonies grew on the surface of the ticks. The B1 of B. bassiana (108 conidia/ ml) was the most pathogenic on adult and developmental stages of ticks. The impact of different concentrations of M. anisopliae on adult and developmental stages in comparison with controls was similar, with the growth of green hyphae around eggs and adult ticks which prevented hatching and resulted in tick death. The M2 suspension (107 conidia/ml) had the most potent effect on adult ticks and developmental stages. The efficacy of this suspension was higher than that of the B1 concentration of B. bassiana (98 and 100% respectively). Therefore, 107conidia/ml of M. anisopliae seems to be the most effective fungus to use as bio-pesticide to control different developmental stages of R. sanguineus and may be a reasonable alternative to chemical treatment.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


2015 ◽  
Vol 47 (3) ◽  
pp. 117 ◽  
Author(s):  
M.W. Khudhair ◽  
M.Z. Khalaf ◽  
H.F. Alrubeai ◽  
A.K. Shbar ◽  
B.S. Hamad ◽  
...  

Virulence of entomopathogenic fungi <em>Metarhizium anisopliae</em> and <em>Beauveria bassiana</em> were tested against Arabian Rhinoceros Beetle, <em>Oryctes agamemnon arabicus</em> larvae. Four concentrations (1×10<sup>5</sup>, 1×10<sup>7</sup>, 1×10<sup>9</sup> and 1×10<sup>11</sup> conidia/mL<sup>–1</sup>) of two locally isolated entomopathogenic fungi spore suspensions were used in this study via larval direct spraying. Results revealed that both isolates can cause high mortality rate reaching 100% after 29 days. However, <em>Beauveria bassiana</em> scored higher mortality rate in short time especially at the concentration of 1×10<sup>11</sup> conidia/ mL<sup>–1</sup> with lethal time (LT)<sub>50</sub> 12.75 and LT<sub>90</sub> 20.00; while, <em>Metarhizium anisopliae</em> caused the higher percentage of malformed adults. Moreover, both isolates affected insect’s life cycle particularly in the pupal stage which was reduced remarkably by almost 50% in comparison with the control treatment.


2017 ◽  
Vol 23 (3) ◽  
pp. 183 ◽  
Author(s):  
Hendrawan Samodra ◽  
Yusof Bin Ibrahim

Eight isolates of entomopathogenic fungi were evaluated as dried conidia against the rice moth,  Corcyra cephalonica. In bioassays two isolates of Beauveria bassiana (BbGc and BbPs) and one isolate of Metarhizium anisopliae (MaPs) consistently gave high mortality to C. cephalonica larvae. Formulations in either kaolin, talc or tapioca flour (20 % w/w a.i.) thoroughly mixed with long grain rice in plastic cups (8 cm diameter by 5 cm) gave complete larval mortality by the 12th day of treatment. However, in general those formulated in kaolin and talc were more efficacious and faster to kill compared to those formulated in tapioca flour or the unformulated control. Even at the lowest rate of 0.05 g BbGc in kaolin provided 100% mortality 7 days after introduction compared with other dust formulations. Isolate BbGc in kaolin and talc administered at 0.4 g a.i. in 200 g rice packed in plastic kept at room temperature provided protection against the rice moth up to 4 months of storage. Larval mortality in excess of 90% was obtained 15 days after introduction. Formulations of MaPs was effective only within the first month of storage beyond which infectivity rapidly declined.


2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


Sign in / Sign up

Export Citation Format

Share Document