scholarly journals BAT ALGORITHM IMPLEMENTATION TO OPTIMALLY DESIGN THE STABILIZER POWER SYSTEM ON THE SUPPA GENERATOR

SINERGI ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 233
Author(s):  
Muhammad Ruswandi Djalal ◽  
Herman HR

One of the control devices that can be used to strengthen the performance of PLTU Suppa is the installation of Power System Stabilizer. The problem of using Power System Stabilizer (PSS) in generator excitation is how to determine the optimal PSS parameter. To overcome these problems, the authors use a method of intelligent bats to design PSS. Bat's algorithm will work based on the specified destination function, which is an Integral Time Absolute Error (ITAE). In this research, we will see the deviation response of velocity and the rotor angle of the suppa generator in case of interference. The results of the analysis show that the uncontrolled system produces oscillation overshoot speed of -0.02437 pu to 0.006517 pu, conventional PSS about -0.02186 pu to 0.004623 pu and with PSS Bat overshoot of -0.01507 pu up to 0.0006223 pu. A loop for rotor angle response shows good results with reduced oscillation and rapidly leading to steady-state conditions. From the analysis results can be concluded, the performance of suppa generator is increased with the installation of Power System Stabilizer with optimal PSS parameters, with parameters respectively Kpss = 32.2077, T1 = 0.0173, T2 = 0.0401, T3 = 0.9174, T4 = 1.2575.

2018 ◽  
Vol 17 (1) ◽  
pp. 148
Author(s):  
Muhammad Ruswandi Djalal ◽  
Faisal Faisal

Masalah penggunaan Power System Stabilizer (PSS) pada eksitasi generator adalah bagaimana menentukan parameter PSS yang optimal. Untuk mengatasi masalah tersebut, penulis menggunakan metode cerdas berbasis algoritma kelelawar untuk mendesain PSS. Algoritma Kelelawar adalah algoritma yang bekerja berdasarkan perilaku kelelawar dalam mencari sumber makanan. Korelasi dengan penelitian ini adalah, sumber makanan yang dicari oleh kelelawar merepresentasikan sebagai parameter PSS yang akan dioptimasi. Algoritma kelelawar akan bekerja berdasarkan  fungsi tujuan yang sudah ditentukan, yaitu Integral Time Absolute Error (ITAE). Pada penelitian ini akan dilihat respon deviasi kecepatan dan sudut rotor setiap generator, bila terjadi gangguan di bakaru generator. Hasil analisa menunjukkan, sistem tanpa kontrol menghasilkan osilasi overshoot yang besar, dan setelah tambahan peralatan kontrol PSS osilasi tersebut dapat diredam. Sehingga overshoot dan settling time masing - masing generator dapat dikurangi dan generator dapat dengan cepat menuju ke kondisi steady state.


Author(s):  
Muhammad Ruswandi Djalal ◽  
Muhammad Yusuf Yunus ◽  
Herman Nawir ◽  
Andi Imran

Abstract - The problem of using Power System Stabilizer (PSS) in generator excitation is how to determine optimal PSS parameter. To overcome these problems, the authors use a method of intelligent bats based algorithm to design PSS. Bat Algorithm is an algorithm that works based on bat behavior in search of food source. Correlation with this research is, food sources sought by bats represent as PSS parameters to be optimized. Bat's algorithm will work based on a specified destination function, namely Integral Time Absolute Error (ITAE). In this research will be seen the deviation of velocity and rotor angle of each generator, in case of disturbance in bakaru generator. The analysis results show that the uncontrolled system produces a large overshoot oscillation, and after the addition of PSS oscillation control equipment can be muted. So that the overshoot and settling time of each generator can be reduced and the generator can quickly go to steady state condition.


Author(s):  
Muhammad Ruswandi Djalal ◽  
Andareas Pangkung ◽  
Sonong Sonong ◽  
Apollo Apollo

Changes in load on the power system suddenly, can cause dynamic disruption. This disturbance can not be responded well by the generator, so it can affect the system dynamic stability, such as the occurrence of oscillation speed and rotor angle. Conventional control of excitation and governor, also unable to repair the oscillations, so that additional controllers such as Power System Stabilizer (PSS) are required. In the use of PSS, there are several problems that often arise, namely the correct tuning of PSS parameters. In this research, we proposed a method of smart computing based on bat algorithm, for tuning PSS parameters. From the analysis results can be concluded, the performance performance of generator barru increased with the installation of Power System Stabilizer with optimal PSS parameter, with parameters respectively Kpss = 44.0828, T1 = 0.0284, T2 = 0.0146, T3 = 0.7818, T4 = 1.2816.


2017 ◽  
Vol 1 (2) ◽  
pp. 47
Author(s):  
Muhammad Ruswandi Djalal ◽  
Muhammad Yunus Yunus ◽  
Herman Nawir ◽  
Andi Imran

The problem of using Power System Stabilizer (PSS) in generator excitation is how to determine the optimal PSS parameter. To overcome these problems, the authors use a method of intelligent bats based algorithm to design PSS. Bat Algorithm is an algorithm that works based on bat behavior in search of food source. Correlation with this research is, food sources sought by bats represent as PSS parameters to be optimized. Bat's algorithm will work based on a specified destination function, namely Integral Time Absolute Error (ITAE). In this research will be seen the deviation of velocity and rotor angle of each generator, in case of disturbance in bakaru generator. The analysis results show that the uncontrolled system produces a large overshoot oscillation, and after the addition of PSS oscillation control equipment can be muted. So that the overshoot and settling time of each generator can be reduced and the generator can quickly go to steady state condition


2022 ◽  
Vol 7 (2) ◽  
pp. 185-194
Author(s):  
I Made Ari Nrartha ◽  
I Made Ginarsa ◽  
Sultan Sultan ◽  
Agung Budi Muljono ◽  
Warindi Warindi

Teknologi fuzzy tipe 2 (FT2) berkembang sangat pesat dan memasuki bidang stabilitas sistem tenaga listrik. Pembangkit listrik tenaga mikro hidro (PLTMH) dan diesel (PLTD) riskan terhadap gangguan perubahan beban. Studi stabilitas penting dikerjakan untuk memastikan bahwa operasi PLTMH-PLTD tetap stabil ketika dan setelah beban berubah. Maka power system stabilizer (PSS) berbasis FT2 diusulkan untuk perbaikan stabilitas sistem tersebut. FT2PSS didesain dengan input kecepatan rotor dan derivatifnya. Outputnya adalah sinyal stabilitas yang diumpankan pada sistem eksitasi. Hasilnya, FT2PSS mampu mereduksi overshoot -0,035 deg. Sedangkan overshoot untuk CPSS adalah -0,051 deg. FT2PSS juga dapat mempersingkat settling time dan mempercepat steady state. Stabilitas PLTMH-PLTD yang dilengkapi dengan FT2PSS diperbaiki secara significan.


Author(s):  
D. K. Sambariya ◽  
R. Prasad

AbstractThis article presents the design of optimized fuzzy logic-based power system stabilizer (FPSS) to enhance small signal stability using bat algorithm (BA). The proposed optimization of scaling factors of FPSS is considered with an objective function based on square error minimization to guarantee the stability of nonlinear models of test system using BA. The BA-optimized FPSS (BAFPSS) controller is applied to the standard IEEE ten-machine thirty-nine-bus test power system model in the decentralized manner, and the performance is compared with the robust fuzzy controller. The robustness is tested by considering four different models of the test power system with different fault locations to establish the superiority of the proposed BAFPSS over the FPSS.


2016 ◽  
Vol 2016 ◽  
pp. 1-22 ◽  
Author(s):  
Dhanesh K. Sambariya ◽  
Rajendra Prasad

The design of a proportional, derivative, and integral (PID) based power system stabilizer (PSS) is carried out using the bat algorithm (BA). The design of proposed PID controller is considered with an objective function based on square error minimization to enhance the small signal stability of nonlinear power system for a wide range of operating conditions. Three benchmark power system models as single-machine infinite-bus (SMIB) power system, two-area four-machine ten-bus power system, and IEEE New England ten-machine thirty-nine-bus power system are considered to examine the effectiveness of the designed controller. The BA optimized PID based PSS (BA-PID-PSS) controller is applied to these benchmark systems, and the performance is compared with controllers reported in literature. The robustness is tested by considering eight plant conditions of each system, representing the wide range of operating conditions. It includes unlike loading conditions and system configurations to establish the superior performance with BA-PID-PSS over-the-counter controllers.


Sign in / Sign up

Export Citation Format

Share Document