scholarly journals Mechanical characterization of additive manufacturing composite parts

Respuestas ◽  
2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Juan Sebastian León-Becerra ◽  
Octavio A. González-Estrada ◽  
William Pinto-Hernández

Additive Manufacturing is a novel manufacturing method in which the part is produced layer by layer from a 3D CAD model. In this work, we present the mechanical characterization of Fusion Deposition Modeling (FDM). Composite parts made by a nylon matrix with two kinds of fiber reinforcements: carbon fiber or fiberglass. From the obtained microstructure, we perform a division of the composite part in regions, and individual stiffness matrices are encountered by either using a linear elastic isotropic model, for the case of solid matrix filling, or an orthotropic linear elastic model based on micromechanical results. Then, a volume average stiffness method is employed to perform the characterization of the whole part. The theoretical results are compared with the experimental data, showing good agreement for both cases. This research allows the prediction of the structural behavior of additive manufacturing 2composite parts.

Author(s):  
Arivazhagan Pugalendhi ◽  
Rajesh Ranganathan

Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197999 ◽  
Author(s):  
Krishanu Nandy ◽  
David W. Collinson ◽  
Charlie M. Scheftic ◽  
L. Catherine Brinson

2019 ◽  
Vol 3 (2) ◽  
pp. 30 ◽  
Author(s):  
Mohsen Ziaee ◽  
Rebecca Hershman ◽  
Ayesha Mahmood ◽  
Nathan B. Crane

Cadaveric decellularized bone tissue is utilized as an allograft in many musculoskeletal surgical procedures. Typically, the allograft acts as a scaffold to guide tissue regeneration with superior biocompatibility relative to synthetic scaffolds. Traditionally these scaffolds are machined into the required dimensions and shapes. However, the geometrical simplicity and, in some cases, limited dimensions of the donated tissue restrict the use of allograft scaffolds. This could be overcome by additive manufacturing using granulated bone that is both decellularized and demineralized. In this study, the large area projection sintering (LAPS) method is evaluated as a fabrication method to build porous structures composed of granulated cortical bone bound by polycaprolactone (PCL). This additive manufacturing method utilizes visible light to selectively cure the deposited material layer-by-layer to create 3D geometry. First, the spreading behavior of the composite mixtures is evaluated and the conditions to attain improved powder bed density to fabricate the test specimens are determined. The tensile strength of the LAPS fabricated samples in both dry and hydrated states are determined and compared to the demineralized cancellous bone allograft and the heat treated demineralized-bone/PCL mixture in mold. The results indicated that the projection sintered composites of 45–55 wt %. Demineralized bone matrix (DBM) particulates produced strength comparable to processed and demineralized cancellous bone.


2020 ◽  
Vol 89 ◽  
pp. 106634 ◽  
Author(s):  
Joseph Marae Djouda ◽  
Mohamed Ali Bouaziz ◽  
Marouene Zouaoui ◽  
Matthieu Rambaudon ◽  
Julien Gardan ◽  
...  

1982 ◽  
Vol 104 (1) ◽  
pp. 26-28 ◽  
Author(s):  
Gianluca Medri

This note presents a model suitable for the mechanical characterization of isotropic materials with different behavior in tension and compression. The model has been derived from the nonlinear elastic theory and elaborated to adapt it to the small deformation field; the constitutive relation may reliably correlate stress and strain fields even in three-dimensional elastic problems.


2019 ◽  
Vol 70 (1) ◽  
pp. 51-59
Author(s):  
Seid Hajdarević ◽  
Murčo Obućina ◽  
Elmedin Mešić ◽  
Sandra Martinović

In this paper, the stress and strain analysis of common laminated wood seat shell is performed. Experimental stiffness evaluation is conducted by measuring displacement of the point on the backrest, and experimental stress analysis is carried out by tensometric measuring at the critical transition area from the seat to the backrest. Finite element analysis is carried out layer by layer with a “2D linear elastic model” for orthotropic materials. Good matching is found between numerical and experimental results of displacement. It is also shown that the results of the principal stress in the measurement points of the seat shell compare favourably with experimental data. The applied in-plane stress analysis of each individual veneer is not applicable for interlaminar stress calculations that are a significant factor in curved forms of laminated wood. Curved forms of laminated wood products require more complex numerical analysis, but the method can be used to achieve approximate data in early phase of product design.


Sign in / Sign up

Export Citation Format

Share Document