stl file
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 56)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 6-12
Author(s):  
Kateryna Maiorova ◽  
Iurii Vorobiov ◽  
Maksym Boiko ◽  
Valeriia Suponina ◽  
Oleh Komisarov

The subject of this research is the technology of reengineering and control of parts of aircraft objects (AOs) and technological equipment for their manufacture. The predefined accuracy of the keel of a light aircraft and molding surfaces of technological equipment for its manufacture has been ensured by using reengineering technology and CAD systems. A portrait of the actual physically existing keel of a light aircraft was built in the *.stl file format using the software Artec Studio (USA). The control and comparison of the geometry of the shapes of the analytical standard with the actual physically existing keel of a light aircraft based on its portrait have been implemented. The methods used are the analysis and synthesis of the experimental geometry of shapes, the method of expert evaluations. The following results were obtained: based on the analysis and synthesis, the presence of significant errors in the accuracy of the manufacture of the keel for a light aircraft in the range from −5.26 mm to +5.39 mm was detected. It has been shown that the key factor is the keel's relative plane indicator, which is outside the tolerance margin and is 85 %. It was decided to fabricate new technological equipment from another material – organic plastics. Control of the technological equipment made from organic plastics for the keel of a light aircraft showed that the shape-forming surfaces of the equipment have appropriate shapes and sizes corresponding to the existing analytical standard and are devoid of inaccuracies that occurred in the previous version. The range of keel margins that was made using the new technological equipment from organic plastics is from –0.51 mm to +0.34 mm while the relative plane of the keel outside the tolerance margin does not exceed 15 %. The study results showed the adequacy of the decisions taken, ensuring the predefined accuracy for the keel of a light aircraft and molding surfaces of technological equipment for its manufacture.


2021 ◽  
Vol 8 (12) ◽  
pp. 214
Author(s):  
Federica Altieri ◽  
Giovanna Iezzi ◽  
Valeria Luzzi ◽  
Gianni Di Giorgio ◽  
Antonella Polimeni ◽  
...  

Aim: The aim of this technical note is to present a computer-aided design–computer-aided manufacturing (CAD–CAM) surgical guide to perform a computer-guided bone biopsy. Traditionally, to diagnose abnormal conditions affecting jawbone, a bone biopsy is performed with the use of a trephine bur. The positioning of the bur, during the biopsy, is based on the skill of the surgeon; therefore, an inaccurate placement of a trephine bur may occur. The use of a guide, however, can minimize this risk and achieve a better result. Materials and Methods: To determine the site and the extension of bone sampling, the stereolithography file (STL) file of cone–beam computed tomography (CBCT) images is acquired using a specific planning software and superimposed with the STL file of a dental cast; a virtual surgical guide is designed, using the same software that allows a 3D (three-dimensional) view of the guide from different perspectives and planes. The number and site of guide tubes are determined on the basis of the width and the extension of the sampling; thanks to a 3D printer, the surgical guide is manufactured. Results: The use of a customized surgical guide realized with CAD–CAM technology allows a precise and minimally invasive approach, with an accurate three-dimensional localization of the biopsy site. Conclusions: The high precision, great predictability, time-effectiveness and versatility of the present guide should encourage the clinician to use this minimally invasive surgical approach, but controlled clinical trials should be conducted to evaluate the advantages as well as any possible complications.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012020
Author(s):  
Riccardo Zamolo ◽  
Enrico Nobile

Abstract A novel algorithm is presented and employed for the fast generation of meshless node distributions over arbitrary 3D domains defined by using the stereolithography (STL) file format. The algorithm is based on the node-repel approach where nodes move according to the mutual repulsion of the neighboring nodes. The iterative node-repel approach is coupled with an octree-based technique for the efficient projection of the nodes on the external surface in order to constrain the node distribution inside the domain. Several tests are carried out on three different mechanical components of practical engineering interest and characterized by complexity of their geometry. The generated node distributions are then employed to solve a steady-state heat conduction test problem by using the Radial Basis Function-generated Finite Differences (RBF-FD) meshless method. Excellent results are obtained in terms of both quality of the generated node distributions and accuracy of the numerical solutions.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3761
Author(s):  
Simone Shah Abhay ◽  
Dhanraj Ganapathy ◽  
Deepak Nallaswamy Veeraiyan ◽  
Padma Ariga ◽  
Artak Heboyan ◽  
...  

Recently, polyetheretherketone (PEEK) has been introduced to the dental market as a high-performance and chemically inert biomaterial. This study aimed to compare the wear resistance, abrasiveness, color stability, and displacement resistance of zirconia and PEEK milled crowns. An ideal tooth preparation of a first maxillary molar was done and scanned by an intraoral scanner to make a digital model. Then, the prosthetic crown was digitally designed on the CAD software, and the STL file was milled in zirconia (CaroZiir S, Carol Zircolite Pvt. Ltd., Gujarat, India) and PEEK (BioHpp, Bredent GmbH, Senden, Germany) crowns using five-axis CNC milling machines. The wear resistance, color stability, and displacement resistance of the milled monolithic zirconia with unfilled PEEK crowns using a chewing simulator with thermocyclic aging (120,000 cycles) were compared. The antagonist wear, material wear, color stability, and displacement were evaluated and compared among the groups using the Wilcoxon–Mann–Whitney U-test. Zirconia was shown to be three times more abrasive than PEEK (p value < 0.05). Zirconia had twice the wear resistance of PEEK (p value < 0.05). Zirconia was more color stable than PEEK (p value < 0.05). PEEK had more displacement resistance than zirconia (p value < 0.05). PEEK offers minimal abrasion, better stress modulation through plastic deformation, and good color stability, which make it a promising alternative to zirconia crown.


2021 ◽  
pp. 44-49
Author(s):  
R. V. Studenikin ◽  
A. A. Mamedov

The effect of discrepancies between digital scans and conventional impressions on the clinical performance of a permanent restoration has not been fully understood.Thirty patients received conventional impressions and digital scans of a single implant restoration. Two crowns were made for the same implant using both methods. The time taken for each procedure was recorded. After analyzing the accuracy and effectiveness of both crowns, the best one was placed. A questionnaire was conducted to assess the preferences and comfort when using crowns made by one method or another.The total time for the traditional impression technique was 15 minutes, while the time for the digital scanning technique was significantly less – 10 minutes.The preparation time, including the disinfection of the silicone impressions, their transportation to the laboratory, the casting of the impressions, the hardening of the plaster, as well as the preparation of the model by the technician, was 4 hours for conventional impressions.The timing for sending the STL file and modeling the structure was less than 2 hours for the digital scan method. The production time of crowns takes 3 hours for both conventional impressions and digital ones.Of all crowns selected for placement, 46.7% were made from conventional impressions and 53.3% from digital scans. Participants preferred the digital scanning technique (89%) over the traditional impression-taking technique (11%).The data from this study suggest that digital scanning and CAD/CAM technology may be more effective and better accepted by study par-ticipants for a single implant restoration than conventional impressions and plaster casts.


2021 ◽  
Vol 11 (18) ◽  
pp. 8760
Author(s):  
Michael Wüthrich ◽  
Maurus Gubser ◽  
Wilfried J. Elspass ◽  
Christian Jaeger

Fused deposition modeling (FDM) 3D printers commonly need support material to print overhangs. A previously developed 4-axis printing process based on an orthogonal kinematic, an additional rotational axis around the z-axis and a 45° tilted nozzle can print overhangs up to 100° without support material. With this approach, the layers are in a conical shape and no longer parallel to the printing plane; therefore, a new slicer strategy is necessary to generate the paths. This paper describes a slicing algorithm compatible with this 4-axis printing kinematics. The presented slicing strategy is a combination of a geometrical transformation with a conventional slicing software and has three basic steps: Transformation of the geometry in the .STL file, path generation with a conventional slicer and back transformation of the G-code. A comparison of conventionally manufactured parts and parts produced with the new process shows the feasibility and initial results in terms of surface quality and dimensional accuracy.


This paper focuses on the design, fabrication and control of a 3-DOF robot arm using stepper motors. The robot arm uses three parallelogram mechanisms to position the end-effector of the robot and keep the end-effector always parallel to the horizontal during the robot motion. The robot is designed on the Autodesk Inventor software. Separated parts of the robot are saved in the stereolithography (STL) file format. Then the parts are fabricated by a 3D printer. The movement of the robotic arm is driven by stepper motors and controlled by Arduino. The Arduino board implements kinematics calculation, creates pulses and sends them to three drivers to driven stepper motors. A software is developed to control the robot by sending the command to the Arduino board.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5308
Author(s):  
Suchada Kongkiatkamon ◽  
Kittipong Booranasophone ◽  
Apichat Tongtaksin ◽  
Valailuck Kiatthanakorn ◽  
Dinesh Rokaya

Recently, translucent zirconia has become the most prevalent material used as a restorative material. This study aimed to compare the crown fracture load of the four most common different translucent zirconia brands available in the market at 1.5 mm thickness. Standardized tooth preparations for a full ceramic crown were designed digitally with software (AutoCAD) by placing a 1.0 mm chamfer margin and 1.5 mm occluso-cervical curvature for the crown sample manufacturing. Stylized crowns were chosen to control the thickness of the crown. The axial and occlusal thickness were standardized to 1.5 mm thickness except at the central pit, which was 1.3 mm thick. The STL file for the tooth dies was prepared using software (3Shape TRIOS® Patient Monitoring, Copenhagen, Denmark). The tooth dies were printed with a resin material (NextDent Model 2.0, Vertex-Dental B.V., Soesterberg, The Netherlands) using a 3D printing software (3D Sprint® Client Version 3.0.0.2494) from a 3D printer (NextDent™ 5100, Vertex-Dental B.V., Soesterberg, The Netherlands). The printing layer thickness was 50 µm. Then, a total of twenty-eight (N = 28) stylized crowns were milled out of AmannGirrbach (Amann Girrbach GmbH, Pforzheim, Germany) (n = 7), Cercon HT (Dentsply Sirona, Bensheim, Germany) (n = 7), Cercon XT (Dentsply Sirona, Bensheim, Germany) (n = 7), and Vita YZ XT (Zahnfabrik, Bäd Sackingen, Germany) (n = 7). Following sintering the crowns, sandblasting was performed and they were bonded to the tooth dies with the resin cement (RelyX U-200, 3M ESPE, Seefeld, Germany) and permitted to self-cure under finger pressure for 6 min. The crowns were loaded on the occlusal surface in a universal testing machine (MTS Centurion) with a stainless-steel ball indenter (7 mm radius) with a loading rate of 1 mm/min to contact the stylized crowns on each of the four cusps until failure. A rubber sheet (1.5 mm thickness) was positioned between the crown and indenter, which helped with the load distribution. Statistical analysis was done using SPSS version 20 (IBM Company, Chicago, USA). The fracture loads were analyzed using Dunnett’s T3 test, and the number of cracks was analyzed using the Mann–Whitney U test among the groups. The significant level was set at p value = 0.05. The mean fracture loads were 3086.54 ± 441.74 N, 4804.94 ± 70.12 N, 3317.76 ± 199.80 N, and 2921.87 ± 349.67 N for AmannGirrbac, Cercon HT, Cercon XT, and Vita YZ XT, respectively. The mean fracture loads for the surfaces with the greatest number of cracks (excluding the occlusal surfaces) were on the lingual surface for AmannGirrbach and Cercon HT, on the distal and mesial for Cercon XT, and on the buccal for Vita YZ XT. We found that the AmannGirrbach had the most overall cracks. Cercon XT had the greatest number of occlusal cracks and appeared to be the most shattered. Cercon HT had the least number of cracks. In conclusion, Cercon HT presented the best strength properties, the highest fracture load, and no visible cracks. AmannGirrbach presented the lowest strength properties.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 61
Author(s):  
John Ryan C. Dizon ◽  
Ciara Catherine L. Gache ◽  
Honelly Mae S. Cascolan ◽  
Lina T. Cancino ◽  
Rigoberto C. Advincula

Additive manufacturing, commonly known as 3D printing, is an advancement over traditional formative manufacturing methods. It can increase efficiency in manufacturing operations highlighting advantages such as rapid prototyping, reduction of waste, reduction of manufacturing time and cost, and increased flexibility in a production setting. The additive manufacturing (AM) process consists of five steps: (1) preparation of 3D models for printing (designing the part/object), (2) conversion to STL file, (3) slicing and setting of 3D printing parameters, (4) actual printing, and (5) finishing/post-processing methods. Very often, the 3D printed part is sufficient by itself without further post-printing processing. However, many applications still require some forms of post-processing, especially those for industrial applications. This review focuses on the importance of different finishing/post-processing methods for 3D-printed polymers. Different 3D printing technologies and materials are considered in presenting the authors’ perspective. The advantages and disadvantages of using these methods are also discussed together with the cost and time in doing the post-processing activities. Lastly, this review also includes discussions on the enhancement of properties such as electrical, mechanical, and chemical, and other characteristics such as geometrical precision, durability, surface properties, and aesthetic value with post-printing processing. Future perspectives is also provided towards the end of this review.


Sign in / Sign up

Export Citation Format

Share Document