scholarly journals Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS)

2019 ◽  
Vol 3 (2) ◽  
pp. 30 ◽  
Author(s):  
Mohsen Ziaee ◽  
Rebecca Hershman ◽  
Ayesha Mahmood ◽  
Nathan B. Crane

Cadaveric decellularized bone tissue is utilized as an allograft in many musculoskeletal surgical procedures. Typically, the allograft acts as a scaffold to guide tissue regeneration with superior biocompatibility relative to synthetic scaffolds. Traditionally these scaffolds are machined into the required dimensions and shapes. However, the geometrical simplicity and, in some cases, limited dimensions of the donated tissue restrict the use of allograft scaffolds. This could be overcome by additive manufacturing using granulated bone that is both decellularized and demineralized. In this study, the large area projection sintering (LAPS) method is evaluated as a fabrication method to build porous structures composed of granulated cortical bone bound by polycaprolactone (PCL). This additive manufacturing method utilizes visible light to selectively cure the deposited material layer-by-layer to create 3D geometry. First, the spreading behavior of the composite mixtures is evaluated and the conditions to attain improved powder bed density to fabricate the test specimens are determined. The tensile strength of the LAPS fabricated samples in both dry and hydrated states are determined and compared to the demineralized cancellous bone allograft and the heat treated demineralized-bone/PCL mixture in mold. The results indicated that the projection sintered composites of 45–55 wt %. Demineralized bone matrix (DBM) particulates produced strength comparable to processed and demineralized cancellous bone.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3120
Author(s):  
Nicolas Söhling ◽  
Maximilian Leiblein ◽  
Alexander Schaible ◽  
Maren Janko ◽  
Joachim Schwäble ◽  
...  

Treatment of large bone defects is one of the great challenges in contemporary orthopedic and traumatic surgery. Grafts are necessary to support bone healing. A well-established allograft is demineralized bone matrix (DBM) prepared from donated human bone tissue. In this study, a fibrous demineralized bone matrix (f-DBM) with a high surface-to-volume ratio has been analyzed for toxicity and immunogenicity. f-DBM was transplanted to a 5-mm, plate-stabilized, femoral critical-size-bone-defect in Sprague-Dawley (SD)-rats. Healthy animals were used as controls. After two months histology, hematological analyses, immunogenicity as well as serum biochemistry were performed. Evaluation of free radical release and hematological and biochemical analyses showed no significant differences between the control group and recipients of f-DBM. Histologically, there was no evidence of damage to liver and kidney and good bone healing was observed in the f-DBM group. Reactivity against human HLA class I and class II antigens was detected with mostly low fluorescence values both in the serum of untreated and treated animals, reflecting rather a background reaction. Taken together, these results provide evidence for no systemic toxicity and the first proof of no basic immunogenic reaction to bone allograft and no sensitization of the recipient.


2000 ◽  
Vol 29 (3) ◽  
pp. 218-226 ◽  
Author(s):  
Christopher E. Kawcak ◽  
Gayle W. Trotter ◽  
Barbara E. Powers ◽  
Richard D. Park ◽  
A. Simon Turner

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1249
Author(s):  
René D. Verboket ◽  
Tanja Irrle ◽  
Yannic Busche ◽  
Alexander Schaible ◽  
Katrin Schröder ◽  
...  

Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.


Orthopedics ◽  
2003 ◽  
Vol 26 (5) ◽  
Author(s):  
Thomas M Turner ◽  
Robert M Urban ◽  
Deborah J Hall ◽  
Susan Infanger ◽  
Steven Gitelis ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 368-371 ◽  
Author(s):  
Samuel E. Ford ◽  
J. Kent Ellington

Difficult problems that are faced when reconstructing severe pilon fractures include filling metaphyseal defects and supporting an impacted, multifragmented articular surface. Supplements to plate fixation currently available in a surgeon’s armamentarium include cancellous bone autograft, structural bone allograft, demineralized bone matrix, and calcium-based cements. Cancellous autograft possesses limited inherent mechanical stability and is associated with graft site morbidity. Structural allografts incorporate inconsistently and are plagued by late resorption. Demineralized bone matrix also lacks inherent structural stability. Calcium phosphate cements are not rigidly fixed to bone unless fixation is applied from cortical bone or through a plate, which must be taken into consideration when planning fixation. The Conventus DRS (Conventus Orthopaedics, Maple Grove, MN) implant is an expandable nitinol scaffold that takes advantage of the elasticity and shape memory of nitinol alloy. Once deployed and locked, it serves as a stable intramedullary base for fragment-specific periarticular fracture fixation, even in the face of metaphyseal bone loss. Two cases of successful implant use are presented. In both cases, the implant is used to fill a metaphyseal void and provide stable articular support to the distal tibial plafond. Levels of Evidence: Therapeutic Level V: Case Report, Expert Opinion


Sign in / Sign up

Export Citation Format

Share Document