Real-time 3-dimensional transesophageal echocardiography assessment of left ventricular shape and function after surgical remodelling

2019 ◽  
Vol 13 (12) ◽  
pp. 473-476
Author(s):  
Yanick Baribeau ◽  
Faraz Mahmood ◽  
Aidan Sharkey ◽  
Jeffrey Bortman ◽  
Robina Matyal ◽  
...  

Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Jonathan Leor ◽  
Sharon Aboulafia-Etzion ◽  
Ayelet Dar ◽  
Lilia Shapiro ◽  
Israel M. Barbash ◽  
...  

Background —The myocardium is unable to regenerate because cardiomyocytes cannot replicate after injury. The heart is therefore an attractive target for tissue engineering to replace infarcted myocardium and enhance cardiac function. We tested the feasibility of bioengineering cardiac tissue within novel 3-dimensional (3D) scaffolds. Methods and Results —We isolated and grew fetal cardiac cells within 3D porous alginate scaffolds. The cell constructs were cultured for 4 days to evaluate viability and morphology before implantation. Light microscopy revealed that within 2 to 3 days in culture, the dissociated cardiac cells form distinctive, multicellular contracting aggregates within the scaffold pores. Seven days after myocardial infarction, rats were randomized to biograft implantation (n=6) or sham-operation (n=6) into the myocardial scar. Echocardiography study was performed before and 65±5 days after implantation to assess left ventricular (LV) remodeling and function. Hearts were harvested 9 weeks after implantation. Visual examination of the biograft revealed intensive neovascularization from the neighboring coronary network. Histological examination revealed the presence of myofibers embedded in collagen fibers and a large number of blood vessels. The specimens showed almost complete disappearance of the scaffold and good integration into the host. Although control animals developed significant LV dilatation accompanied by progressive deterioration in LV contractility, in the biograft-treated rats, attenuation of LV dilatation and no change in LV contractility were observed. Conclusions —Alginate scaffolds provide a conducive environment to facilitate the 3D culturing of cardiac cells. After implantation into the infarcted myocardium, the biografts stimulated intense neovascularization and attenuated LV dilatation and failure in experimental rats compared with controls. This strategy can be used for regeneration and healing of the infarcted myocardium.


Cardiology ◽  
2011 ◽  
Vol 119 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Mehmet Ozkan ◽  
Ahmet Cagri Aykan ◽  
Ozan Gursoy ◽  
Mehmet Altug Tuncer ◽  
Beytullah Cakal ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yoshiki Matsumura ◽  
Manatomo Toyono ◽  
Neil L Greenberg ◽  
Tetsuhiro Yamano ◽  
Kunitsugu Takasaki ◽  
...  

Background: The mitral annular (MA) geometric changes have been reported in patients with various cardiac diseases such as atrial fibrillation (Af), mitral regurgitation (MR) and dilated cardiomyopathy (DCM). The advances of real-time 3D transesophageal echocardiography (TEE) enable us to analyze the MA geometry more accurately and reliably than 3D transthoracic echocardiography (TTE). We sought to determine the independent predictors for MA geometric changes in patients with Af, significant MR, and DCM by 3D TEE. Methods: We examined 32 subjects by 3D TEE and 2D TTE; 6 with lone Af, 9 with mitral valve prolapse (MVP), 3 with organic MR, 6 with DCM, and 8 normal subjects. Left ventricular (LV) end-diastolic and end-systolic volume indices (EDVI and ESVI), ejection fraction (EF), left atrial volume index (LAVI), and MR severity were assessed by 2D TTE. We measured MA area index, commissural length, and MA height (Figure 1 ). For the index of the saddle-shaped MA geometry, MA shape index was calculated as the (MA height)/(commissural length). Results: Patients with MVP and those with DCM had larger MA area index and lower MA shape index than normal subjects (all, P <0.05). MA area index was associated with LAVI, MR severity, and LV EDVI (all, P <0.05) (Figure 2 ). MA shape index was associated with LV EF, ESVI, and the presence of Af (all, P <0.05) (Figure 3 ). In multivariate analysis, LAVI, MR severity, and LV EDVI independently predicted for MA area index, and LV EF was independent predictor for MA shape index (all, P <0.05). Conclusion: MA dilatation was independently associated with larger LA and LV volumes and severer MR, not LV EF, while the saddle-shaped MA geometry was associated with LV EF. Figure 1 Figure 2 Figure 3


2020 ◽  
Vol 9 ◽  
pp. 204800402094729
Author(s):  
Hosam F Ahmed ◽  
John W Petersen ◽  
Anthony A Bavry ◽  
Mahmoud Alhussaini ◽  
Thomas M Beaver

Transcatheter technology has been increasingly used for paravalvular leak closure. We report the use of “ Fusion Technology” (EchoNaviagator, Phillips, Tustin, CA) that combines real-time 2 and 3 dimensional trans-esophageal echocardiography with fluoroscopy imaging to facilitate paravalvular leak closure. This could help to identify the exact site, size, depth and shape of the paravalvular leak for proper positioning of the occluder device, which may result in saving time and effort.


Sign in / Sign up

Export Citation Format

Share Document