scholarly journals Two agents with GBFS algorithms working cooperatively to get a shortest path

2020 ◽  
Vol 25 (3) ◽  
pp. 448-454
Author(s):  
José Andrés Chaves Osorio ◽  
Juan Bernardo Gómez Mendoza ◽  
Edward Andrés González Rios

This study is carried out in order to verify if the implementation of the concept of cooperative work among two agents, that use path planners A* to obtain the shortest path (previous work of the authors) is also valid when the cooperative strategy is applied using another path planner such as the so-called GBFS (Greedy Best First Search). In this sense, this paper shows a path planning strategy that combines the capabilities of two Agents each one with its own path planner GBFS (slightly different from each other) in order to obtain the shortest path. The comparisons between paths are made by analyzing the behavior and results obtained from the agents operating in different forms: (1) Working individually; (2) Working as a team (cooperating and exchanging information). The results show that in all analyzed situations are obtained shortest traveled distances when the path planners work as a cooperative team.

10.5772/5787 ◽  
2005 ◽  
Vol 2 (3) ◽  
pp. 21
Author(s):  
Kristo Heero ◽  
Alvo Aabloo ◽  
Maarja Kruusmaa

This paper examines path planning strategies in partially unknown dynamic environemnts and introduces an approach to learning innovative routes. The approach is verified against shortest path planning with a distance transform algorithm, local and global replanning and suboptimal route following in unknown, partially unknown, static and dynamic environments. We show that the learned routes are more reliable and when traversed repeatedly the robot's behaviour becomes more predictable. The test results also suggest that the robot's behaviour depends on knowledge about the environemnt but not about the path planning strategy used.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1049 ◽  
Author(s):  
Guilherme de Oliveira ◽  
Kevin de Carvalho ◽  
Alexandre Brandão

This paper introduces a strategy for the path planning problem for platforms with limited sensor and processing capabilities. The proposed algorithm does not require any prior information but assumes that a mapping algorithm is used. If enough information is available, a global path planner finds sub-optimal collision-free paths within the known map. For the real time obstacle avoidance task, a simple and cost-efficient local planner is used, making the algorithm a hybrid global and local planning solution. The strategy was tested in a real, cluttered environment experiment using the Pioneer P3-DX and the Xbox 360 kinect sensor, to validate and evaluate the algorithm efficiency.


Author(s):  
Ya Wang ◽  
Dennis Hong

Strategies for finding the shortest path for a mobile robot with two actuated spoke wheels based on variable kinematic configurations are presented in this paper. The optimal path planning strategy proposed here integrate the traditional constrained path planning tools and the unique kinematic configuration spaces of the mobile robot IMPASS (Intelligent Mobility Platform with Actuated Spoke System). IMPASS utilizes a unique mobility concept of stretching in or out individually actuated spokes in order to perform variable curvature radius steering using changing kinematic configuration during its movement. Due to this unique motion strategy, various kinematic topologies produce specific motion characteristics in the way of curvature radius-variable steering. Instead of traditional differential drive or Ackerman steering locomotion, combinational path geometry methods, Dubins’ curve and Reeds and Shepp’s curve are applied to classify optimal paths into known permutations of sequences consisting of various kinematic configurations. Numerical simulation is given to verify the analytical solutions provided by using Lagrange Multiplier.


Author(s):  
Jie Zhong ◽  
Tao Wang ◽  
Lianglun Cheng

AbstractIn actual welding scenarios, an effective path planner is needed to find a collision-free path in the configuration space for the welding manipulator with obstacles around. However, as a state-of-the-art method, the sampling-based planner only satisfies the probability completeness and its computational complexity is sensitive with state dimension. In this paper, we propose a path planner for welding manipulators based on deep reinforcement learning for solving path planning problems in high-dimensional continuous state and action spaces. Compared with the sampling-based method, it is more robust and is less sensitive with state dimension. In detail, to improve the learning efficiency, we introduce the inverse kinematics module to provide prior knowledge while a gain module is also designed to avoid the local optimal policy, we integrate them into the training algorithm. To evaluate our proposed planning algorithm in multiple dimensions, we conducted multiple sets of path planning experiments for welding manipulators. The results show that our method not only improves the convergence performance but also is superior in terms of optimality and robustness of planning compared with most other planning algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1821
Author(s):  
Lazaros Moysis ◽  
Karthikeyan Rajagopal ◽  
Aleksandra V. Tutueva ◽  
Christos Volos ◽  
Beteley Teka ◽  
...  

This work proposes a one-dimensional chaotic map with a simple structure and three parameters. The phase portraits, bifurcation diagrams, and Lyapunov exponent diagrams are first plotted to study the dynamical behavior of the map. It is seen that the map exhibits areas of constant chaos with respect to all parameters. This map is then applied to the problem of pseudo-random bit generation using a simple technique to generate four bits per iteration. It is shown that the algorithm passes all statistical NIST and ENT tests, as well as shows low correlation and an acceptable key space. The generated bitstream is applied to the problem of chaotic path planning, for an autonomous robot or generally an unmanned aerial vehicle (UAV) exploring a given 3D area. The aim is to ensure efficient area coverage, while also maintaining an unpredictable motion. Numerical simulations were performed to evaluate the performance of the path planning strategy, and it is shown that the coverage percentage converges exponentially to 100% as the number of iterations increases. The discrete motion is also adapted to a smooth one through the use of B-Spline curves.


Author(s):  
Ho-Hoon Lee

This paper proposes a path planning strategy for high-performance anti-swing control of overhead cranes, where the anti-swing control problem is solved as a kinematic problem. First, two anti-swing control laws, one for hoisting up and the other for hoisting down, are proposed based on the Lyapunov stability theorem. Then a new path-planning strategy is proposed based on the concept of minimum-time control and the proposed anti-swing control laws. The proposed path planning is free from the usual constraints of small load swing, slow hoisting speed, and small hoisting distance. The effectiveness of the proposed path planning is shown by computer simulation with high hoisting speed and hoisting ratio.


2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.


Sign in / Sign up

Export Citation Format

Share Document