scholarly journals Cloud Transform Algorithm based Approach for Hydrological Series Frequency Analysis

Author(s):  
Chengguo Wu ◽  
Juliang Jin ◽  
Liyang Zhou ◽  
Xia Bai ◽  
Yuliang Zhou ◽  
...  
2021 ◽  
Vol 13 (18) ◽  
pp. 3586
Author(s):  
Xia Bai ◽  
Juliang Jin ◽  
Shaowei Ning ◽  
Chengguo Wu ◽  
Yuliang Zhou ◽  
...  

Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis.


2002 ◽  
Vol 12 (3) ◽  
pp. 165-168
Author(s):  
S. Withington ◽  
P. Kittara ◽  
G. Yassin

1997 ◽  
Vol 117 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Masatake Kawada ◽  
Masakazu Wada ◽  
Zen-Ichiro Kawasaki ◽  
Kenji Matsu-ura ◽  
Makoto Kawasaki

2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


Sign in / Sign up

Export Citation Format

Share Document