scholarly journals Analytical solution of integro-differential equations describing the process of intense boiling of a superheated liquid

Author(s):  
Irina Alexandrova ◽  
Alexander Ivanov ◽  
Dmitri Alexandrov

In this article, an approximate analytical solution of an integro-differential system of equations is constructed, which describes the process of intense boiling of a superheated liquid. The kinetic and balance equations for the bubble-size distribution function and liquid temperature are solved analytically using the Laplace transform and saddle-point methods with allowance for an arbitrary dependence of the bubble growth rate on temperature. The rate of bubble appearance therewith is considered in accordance with the Dering-Volmer and Frenkel-Zeldovich-Kagan nucleation theories. It is shown that the initial distribution function decreases with increasing the dimensionless size of bubbles and shifts to their greater values with time.

Author(s):  
Irina Nizovtseva ◽  
Alexandr Ivanov ◽  
Irina Alexandrova

This paper is devoted to an approximate analytical solution of an integro-differential model describing the process of nucleation and growth of particles in crystallizers, taking into account the thermal-mass exchange with the environment and the removal of product crystals from the metastable medium. The method developed in this work for solving model equations (kinetic equation for the particle size distribution function and balance equations for temperature/impurity concentration) is based on using the saddle point method for calculating the Laplace-type integral. It is shown that the degree of metastability of the liquid decreases with time at a fixed value of the mass inflow from the outside (heat flow to the outside). The crystal size distribution function has the form of an irregular bell-shaped curve, which increases with the intensification of heat and mass exchange with the environment.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1542
Author(s):  
Saima Rashid ◽  
Khadija Tul Kubra ◽  
Juan Luis García Guirao

In this paper, the Aboodh transform is utilized to construct an approximate analytical solution for the time-fractional Zakharov–Kuznetsov equation (ZKE) via the Adomian decomposition method. In the context of a uniform magnetic flux, this framework illustrates the action of weakly nonlinear ion acoustic waves in plasma carrying cold ions and hot isothermal electrons. Two compressive and rarefactive potentials (density fraction and obliqueness) are illustrated. With the aid of the Caputo derivative, the essential concepts of fractional derivatives are mentioned. A powerful research method, known as the Aboodh Adomian decomposition method, is employed to construct the solution of ZKEs with success. The Aboodh transform is a refinement of the Laplace transform. This scheme also includes uniqueness and convergence analysis. The solution of the projected method is demonstrated in a series of Adomian components that converge to the actual solution of the assigned task. In addition, the findings of this procedure have established strong ties to the exact solutions to the problems under investigation. The reliability of the present procedure is demonstrated by illustrative examples. The present method is appealing, and the simplistic methodology indicates that it could be straightforwardly protracted to solve various nonlinear fractional-order partial differential equations.


Author(s):  
Ahmet Yildirim ◽  
Ahmet Gökdogan ◽  
Mehmet Merdan

In this paper, approximate analytical solution of biochemical reaction model is used by the multi-step differential transform method (MsDTM) based on classical differential transformation method (DTM). Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. Results are given explicit and graphical form.


Author(s):  
José A. Gazquez ◽  
Manuel Fernandez-Ros ◽  
Blas Torrecillas ◽  
José Carmona ◽  
Nuria Novas

Sign in / Sign up

Export Citation Format

Share Document