scholarly journals Semiparametric spatio-temporal models with unknown and banded autoregressive coefficient matrices

Author(s):  
Hongxia Wang ◽  
Xuehong Luo ◽  
Long Ling

We consider a new class of semiparametric spatio-temporal models with unknown and banded autoregressive coefficient matrices. The setting represents a type of sparse structure in order to include as many panels as possible. We apply the local linear method and least squares method for Yule-Walker equation to estimate trend function and spatio-temporal autoregressive coefficient matrices respectively. We also balance the over-determined and under-determined phenomena in part by adjusting the order of extracting sample information. Both the asymptotic normality and convergence rates of the proposed estimators are established. The proposed methods are further illustrated using both simulation and case studies, the results also show that our estimator is stable among different sample size, and it performs better than the traditional method with known spatial weight matrices.

2018 ◽  
Vol 147 ◽  
pp. 01002
Author(s):  
Foek Tjong Wong ◽  
Richo Soetanto ◽  
Januar Budiman

In the last decade, several hybrid methods combining the finite element and meshfree methods have been proposed for solving elasticity problems. Among these methods, a novel quadrilateral four-node element with continuous nodal stress (Q4-CNS) is of our interest. In this method, the shape functions are constructed using the combination of the ‘non-conforming’ shape functions for the Kirchhoff’s plate rectangular element and the shape functions obtained using an orthonormalized and constrained least-squares method. The key advantage of the Q4-CNS element is that it provides the continuity of the gradients at the element nodes so that the global gradient fields are smooth and highly accurate. This paper presents a numerical study on the accuracy and convergence of the Q4-CNS interpolation and its gradients in surface fitting problems. Several functions of two variables were employed to examine the accuracy and convergence. Furthermore, the consistency property of the Q4-CNS interpolation was also examined. The results show that the Q4-CNS interpolation possess a bi-linier order of consistency even in a distorted mesh. The Q4-CNS gives highly accurate surface fittings and possess excellent convergence characteristics. The accuracy and convergence rates are better than those of the standard Q4 element.


2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Adejuyigbe O. Fajemisin ◽  
Laura Climent ◽  
Steven D. Prestwich

AbstractThis paper presents a new class of multiple-follower bilevel problems and a heuristic approach to solving them. In this new class of problems, the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. We show that current approaches for solving multiple-follower problems are unsuitable for our new class of problems and instead we propose a novel analytics-based heuristic decomposition approach. This approach uses Monte Carlo simulation and k-medoids clustering to reduce the bilevel problem to a single level, which can then be solved using integer programming techniques. The examples presented show that our approach produces better solutions and scales up better than the other approaches in the literature. Furthermore, for large problems, we combine our approach with the use of self-organising maps in place of k-medoids clustering, which significantly reduces the clustering times. Finally, we apply our approach to a real-life cutting stock problem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel problem and solved using our approach.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ogbonnaya Anicho ◽  
Philip B. Charlesworth ◽  
Gurvinder S. Baicher ◽  
Atulya K. Nagar

AbstractThis work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating multiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved versions. From previous work, SI was observed to perform better across various key performance indicators. However, after tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within the context of this work.


2019 ◽  
Vol 20 (4) ◽  
pp. 386-409
Author(s):  
Elmar Spiegel ◽  
Thomas Kneib ◽  
Fabian Otto-Sobotka

Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually rely on the assumption of a specific parametric distribution for the response and/or homoscedastic error terms. In this article, we propose to apply semiparametric expectile regression to model spatio-temporal effects beyond the mean. Besides the removal of the assumption of a specific distribution and homoscedasticity, with expectile regression the whole distribution of the response can be estimated. For the use of expectiles, we interpret them as weighted means and estimate them by established tools of (penalized) least squares regression. The spatio-temporal effect is set up as an interaction between time and space either based on trivariate tensor product P-splines or the tensor product of a Gaussian Markov random field and a univariate P-spline. Importantly, the model can easily be split up into main effects and interactions to facilitate interpretation. The method is presented along the analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.


2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Ya-Hui Chang ◽  
Cheng-An Lee

This study assesses the performance of satellite precipitation products (SPPs) from the latest version, V06B, Integrated Multi-satellitE Retrievals for Global Precipitation Mission (IMERG) Level-3 (including early, late, and final runs), in depicting the characteristics of typhoon season (July to October) rainfall over Taiwan within the period of 2000–2018. The early and late runs are near-real-time SPPs, while final run is post-real-time SPP adjusted by monthly rain gauge data. The latency of early, late, and final runs is approximately 4 h, 14 h, and 3.5 months, respectively, after the observation. Analyses focus on the seasonal mean, daily variation, and interannual variation of typhoon-related (TC) and non-typhoon-related (non-TC) rainfall. Using local rain-gauge observations as a reference for evaluation, our results show that all IMERG products capture the spatio-temporal variations of TC rainfall better than those of non-TC rainfall. Among SPPs, the final run performs better than the late run, which is slightly better than the early run for most of the features assessed for both TC and non-TC rainfall. Despite these differences, all IMERG products outperform the frequently used Tropical Rainfall Measuring Mission 3B42 v7 (TRMM7) for the illustration of the spatio-temporal characteristics of TC rainfall in Taiwan. In contrast, for the non-TC rainfall, the final run performs notably better relative to TRMM7, while the early and late runs showed only slight improvement. These findings highlight the advantages and disadvantages of using IMERG products for studying or monitoring typhoon season rainfall in Taiwan.


2015 ◽  
Vol 57 (3) ◽  
pp. 325-345 ◽  
Author(s):  
Su Yun Kang ◽  
James McGree ◽  
Peter Baade ◽  
Kerrie Mengersen

Sign in / Sign up

Export Citation Format

Share Document