scholarly journals Fatigue Damage Detection and Risk Assessment via Wavelet Transform and Neural Network Analysis of Ultrasonic Signals

Author(s):  
HASSAN ALQAHTANI

This paper develops a data-driven autonomous method for detection of fatigue damage and classification of the associated damage risk in mechanical structures, based on ultrasonic signal energy. The underlying concept is built upon attenuation of the signal and stability of the attenuation process. The attenuation provides pertinent information for damage quantification, whereas the stability represents resistance towards the fatigue damage growth. The proposed neural network (NN) model has been trained using the scaled conjugate-gradient back-propagation method. The NN model is capable of damage detection and damage classification into five classes of increasing risk. The Daubechies wavelet transform has been used to reduce the noisy pattern of the ultrasonic signal energy by using the associated approximation coefficients. The results show that the proposed method of approximation signal energy can detect and classify the damage with an accuracy of up to ∼ 9 8 . 5 % .

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1322 ◽  
Author(s):  
Chun-Yao Lee ◽  
Yi-Hsin Cheng

This paper proposes a motor fault detection method based on wavelet transform (WT) and improved PSO-BP neural network which is combined with improved particle swarm optimization (PSO) and a back propagation (BP) neural network with linearly increasing inertia weight. First, this research used WT to analyze the current signals of the healthy motor, bearing damage motor, stator winding inter-turn short circuit motor, and broken rotor bar motor. Second, features after completing the signal analysis were extracted, and three types of classifiers were used to classify. The results show that the improved PSO-BP neural network can effectively detect the cause of failure. In addition, in order to simulate the actual operating environment of the motor, this study added white noise with signal noise ratios of 30 dB, 25 dB, and 20 dB to verify that this model has a better anti-noise ability.


Sign in / Sign up

Export Citation Format

Share Document