scholarly journals Linking brain size in wild stream-dwelling brown trout with dietary supply of omega-3 fatty acids

Author(s):  
Libor Závorka ◽  
Magnus Lovén Wallerius ◽  
Martin J. Kainz ◽  
Johan Höjesjö

1. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are key structural lipids and their dietary intake is essential for brain development of virtually all vertebrates. The importance of n-3 LC-PUFA has been demonstrated in clinical and laboratory studies, but little is known about how differences in availability of n-3 LC-PUFA in natural prey influence brain development of wild consumers. The availability of n-3 LC-PUFA in the prey communities is driven by primary producers and it is therefore distributed heterogeneously, but predictably across ecosystems, being higher in aquatic than in terrestrial food webs. Consequently, the numerous consumers foraging on the interface of aquatic and terrestrial food webs can differ substantially in their intake of n-3 LC-PUFA, which may lead to in brain development, yet, this hypothesis still remains to be tested. 2. Here we use the previously demonstrated shift towards higher reliance on n-3 LC-PUFA deprived terrestrial prey of native brown troutSalmo trutta living in sympatry with invasive brook troutSalvelinus fontinalis to explore this hypothesis. 3. We found that the content of n-3 LC-PUFA in muscle tissues of brown trout decreased with increasing consumption of n-3 LC-PUFA deprived terrestrial prey. Brain volume was positively related to content of the n-3 LC-PUFA, docosahexaenoic acid, in muscle tissues of brown trout. 4. Our study thus suggests that increased reliance on low quality diet of n-3 LC-PUFA deprived subsidies from terrestrial food web can have a significant negative impact on brain development of wild trout. These findings provide the first evidence of an intra-specific link between n-3 LC-PUFA content in natural prey and brain size of wild vertebrate consumers. 5. Ongoing global change is predicted to reduce the availability of dietary n-3 LC-PUFA across food webs. Therefore, our findings emphasise the need for further research on how wild consumers adapt to the shortage of dietary n-3 LC-PUFA in order to maintain optimal development and functioning of their brain, which is crucial for their fitness.

2022 ◽  
Author(s):  
Libor Zavorka ◽  
Magnus Lovén Wallerius ◽  
Martin Kainz ◽  
Johan Höjesjö

Abstract Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are key structural lipids and their dietary intake is essential for brain development of virtually all vertebrates. The importance of n-3 LC-PUFA has been demonstrated in clinical and laboratory studies, but little is known about how differences in availability of n-3 LC-PUFA in natural prey influence brain development of wild consumers. The numerous consumers foraging on the interface of aquatic and terrestrial food webs can differ substantially in their intake of n-3 LC-PUFA, which may lead to differences in brain development, yet, this hypothesis remains to be tested. Here we use the previously demonstrated shift towards higher reliance on n-3 LC-PUFA deprived terrestrial prey of native brown trout Salmo trutta living in sympatry with invasive brook trout Salvelinus fontinalis to explore this hypothesis. We found that the content of n-3 LC-PUFA in muscle tissues of brown trout decreased with increasing consumption of n-3 LC-PUFA deprived terrestrial prey. Brain volume was positively related to content of the n-3 LC-PUFA, docosahexaenoic acid, in muscle tissues of brown trout. Our study thus suggests that increased reliance on low quality diet of n-3 LC-PUFA deprived subsidies can have a significant negative impact on brain development of wild trout. Our findings are important, because ongoing global change is predicted to reduce the availability of dietary n-3 LC-PUFA across food webs and we showed here a first evidence of how brain of wild vertebrate consumers response to scarcity of n-3 LC-PUFA content in natural prey.


Author(s):  
Libor Závorka ◽  
Magnus Lovén Wallerius ◽  
Martin J. Kainz ◽  
Johan Höjesjö

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Juliana Rombaldi Bernardi ◽  
Renata de Souza Escobar ◽  
Charles Francisco Ferreira ◽  
Patrícia Pelufo Silveira

Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children’s neurodevelopment, nutrition, and growth.


Author(s):  
Belmira Lara da Silveira Andrade-da-Costa ◽  
Alinny Rosendo Isaac ◽  
Ricielle Lopes Augusto ◽  
Raphael Fabricio de Souza ◽  
Hércules Rezende Freitas ◽  
...  

2019 ◽  
Vol 41 (6) ◽  
pp. 909-924 ◽  
Author(s):  
Laura Helenius ◽  
Suzanne Budge ◽  
Steven Duerksen ◽  
Emmanuel Devred ◽  
Catherine L Johnson

Abstract Linking production, transfer and subsequent bioavailability of nutritionally significant matter from phytoplankton to higher trophic levels is a fundamental aspect in understanding marine food webs. The plant–animal interface is of interest because of the highly variable transfer between producers and consumers, and the myriad of factors that influence it. Essential fatty acids (EFAs) are dietary nutrients that are necessary for normal function in all consumers, yet it remains unclear how efficiently they are transferred through marine food webs. We introduced a 13C-labelled carbon source to the cryptophyte Rhodomonas salina to quantify primary production of two omega-3 long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We investigated transfer and assimilation efficiencies of these EFAs from phytoplankton to the calanoid copepod Calanus finmarchicus in an 8-day feeding experiment. We found low production of both EFAs in R. salina. Assimilation efficiencies of both EFAs ranged from 5 to 15% throughout the experiment, remaining slightly higher on average for DHA. This was mirrored in more efficient trophic transfer of DHA (up to 28%, compared to 13% for EPA). These results add to previously scarce experiments empirically quantifying the assimilation and transfer efficiency of EFAs in a basic marine planktonic food chain.


Author(s):  
Libor Závorka ◽  
J. Koene ◽  
Tiffany Armstrong ◽  
Lena Fehlinger ◽  
Colin Adams

The trade-off between cognitive capacity and developmental costs drive brain size and morphology across fish species, but this pattern is less explored at intraspecific level. Physical habitat complexity has been proposed as a selection pressure on cognitive capacity that shapes brain morphology of fishes, but development of brain is also inherently linked to supply of energy and nutrients, particularly of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). In this study, we compared brain morphology of brown trout Salmo trutta from stream, lake, and hatchery environments, which differ in physical complexity and availably of dietary n-3 LC-PUFA ranging from low habitat complexity and high n-3 LC-PUFA availability in hatchery to high habitat complexity and low n-3 LC-PUFA availability in streams. We found that brain size, and size of optic tectum and telencephalon differed across the three habitats, being largest in lake fish. We suggest that these differences appeared to associate with diet quality and habitat specific behavioural adaptations rather than physical habitat complexity.


Sign in / Sign up

Export Citation Format

Share Document