scholarly journals Structure-dependence in Initial Decomposition of trans-1,2-Dimethylcyclohexyl Isomers: Kinetic Exploration and Conformational Analysis

Author(s):  
Huiting Bian ◽  
Yongjin Wang ◽  
Jing Li ◽  
Jun Zhao

Cyclohexyl radicals are crucial primary intermediates in combustion of fossil and alternative fuels. They would present the inherent conformation feature, i.e. diverse conformers retained in inversion-topomerization pathways, jointly controlled by the varying radical site and specific spatial positions of alkyl side chains on “easy-distortion” cyclic ring. These conformers for one radical have different energies and thermodynamics, and are highly expected to influence their subsequent decomposition reactions in terms of energetics and kinetics. To reveal such impact, all conformational structures and their interconversion mechanisms for trans-1,2-dimethylcyclohexyl isomers were explored by employing quantum chemical calculations coupled with transition state theory. Originated from distinct conformers, all accessible transition states were explicitly identified in different reaction paths for each type of intramolecular H-transfer or β-scission, and then were carefully used in computing rate coefficients. The kinetic predictions demonstrate that the fairly speedy equilibrium among conformers would be established for one isomer via conformation before they proceed the initial decomposition over 300-2500 K. This allows thoroughly evaluating the contribution of various conformers to the kinetics for multiple paths in one reaction regarding to their thermodynamic properties. Moreover, conformational analysis elucidates that H-transfers exhibit strong structure dependence. Note that the most favorable 1,5 H-transfer is only feasible for one twist-boat with radical site in axial side chain accompanied by one isoclinal methyl group. The results for β-scissions are affected by steric energies and substituent effects remained in conformational structures. These findings facilitate to finally suggest the proper kinetic parameters for each decomposition reaction with the aim of their potential implication in kinetic modelling.

2020 ◽  
Vol 20 (11) ◽  
pp. 6671-6686
Author(s):  
Simon Rosanka ◽  
Giang H. T. Vu ◽  
Hue M. T. Nguyen ◽  
Tien V. Pham ◽  
Umar Javed ◽  
...  

Abstract. Isocyanic acid (HNCO) is a chemical constituent suspected to be harmful to humans if ambient concentrations exceed ∼1 ppbv. HNCO is mainly emitted by combustion processes but is also inadvertently released by NOx mitigation measures in flue gas treatments. With increasing biomass burning and more widespread usage of catalytic converters in car engines, good prediction of HNCO atmospheric levels with global models is desirable. Little is known directly about the chemical loss processes of HNCO, which limits the implementation in global Earth system models. This study aims to close this knowledge gap by combining a theoretical kinetic study on the major oxidants reacting with HNCO with a global modelling study. The potential energy surfaces of the reactions of HNCO with OH and NO3 radicals, Cl atoms, and ozone were studied using high-level CCSD(T)/CBS(DTQ)//M06-2X/aug-cc-pVTZ quantum chemical methodologies, followed by transition state theory (TST) theoretical kinetic predictions of the rate coefficients at temperatures of 200–3000 K. It was found that the reactions are all slow in atmospheric conditions, with k(300K)≤7×10-16 cm3molecule-1s-1, and that product formation occurs predominantly by H abstraction; the predictions are in good agreement with earlier experimental work, where available. The reverse reactions of NCO radicals with H2O, HNO3, and HCl, of importance mostly in combustion, were also examined briefly. The findings are implemented into the atmospheric model EMAC (ECHAM/MESSy Atmospheric Chemistry) to estimate the importance of each chemical loss process on a global scale. The EMAC predictions confirm that the gas-phase chemical loss of HNCO is a negligible process, contributing less than 1 % and leaving heterogeneous losses as the major sinks. The removal of HNCO by clouds and precipitation contributes about 10 % of the total loss, while globally dry deposition is the main sink, accounting for ∼90 %. The global simulation also shows that due to its long chemical lifetime in the free troposphere, HNCO can be efficiently transported into the UTLS by deep convection events. Daily-average mixing ratios of ground-level HNCO are found to regularly exceed 1 ppbv in regions dominated by biomass burning events, but rarely exceed levels above 10 ppt in other areas of the troposphere, though locally instantaneous toxic levels are expected.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 55
Author(s):  
Alina Soceanu ◽  
Nicoleta Matei ◽  
Simona Dobrinas ◽  
Viorica Popescu

Vitamin C or ascorbic acid is a basic nutrient, a highly effective antioxidant, widely used as food additive. Therefore, quality control in food industry demands ascorbic acid determination methods. The purpose of this study was to determine vitamin C in natural orange juices by spectrometric and voltammetric methods. Another goal was to determine the kinetic and thermodynamics activation parameters for ascorbic acid degradation in orange juices over time and at different temperatures. It was observed that during storage, ascorbic acid concentrations in orange juices were gradually decreased with time at a rate depending on storage temperature and type of orange juice. The reaction order was determined through integrated graphical analysis where the dependences of ln ct/c0 as a function of time reveals the high values for R2, indicating that the kinetics of the degradation of AA follows first order reaction at both studied temperatures. For studied samples the loss of ascorbic acid was varied between 4.33% and 9.13%. Enthalpy variation (ΔH) and entropy variation (ΔS) of activation process were obtained from the Eyring–Polany model based on transition state theory. The values of activation energy ranged between 7289.24 kJmol−1 and 15689.54 kJmol−1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamad Akbar Ali ◽  
M. Balaganesh ◽  
Faisal A. Al-Odail ◽  
K. C. Lin

AbstractThe rate coefficients for OH + CH3OH and OH + CH3OH (+ X) (X = NH3, H2O) reactions were calculated using microcanonical, and canonical variational transition state theory (CVT) between 200 and 400 K based on potential energy surface constructed using CCSD(T)//M06-2X/6-311++G(3df,3pd). The results show that OH + CH3OH is dominated by the hydrogen atoms abstraction from CH3 position in both free and ammonia/water catalyzed ones. This result is in consistent with previous experimental and theoretical studies. The calculated rate coefficient for the OH + CH3OH (8.8 × 10−13 cm3 molecule−1 s−1), for OH + CH3OH (+ NH3) [1.9 × 10−21 cm3 molecule−1 s−1] and for OH + CH3OH (+ H2O) [8.1 × 10−16 cm3 molecule−1 s−1] at 300 K. The rate coefficient is at least 8 order magnitude [for OH + CH3OH(+ NH3) reaction] and 3 orders magnitude [OH + CH3OH (+ H2O)] are smaller than free OH + CH3OH reaction. Our calculations predict that the catalytic effect of single ammonia and water molecule on OH + CH3OH reaction has no effect under tropospheric conditions because the dominated ammonia and water-assisted reaction depends on ammonia and water concentration, respectively. As a result, the total effective reaction rate coefficients are smaller. The current study provides a comprehensive example of how basic and neutral catalysts effect the most important atmospheric prototype alcohol reactions.


2017 ◽  
Author(s):  
Siripina Vijayakumar ◽  
Avinash Kumar ◽  
Balla Rajakuma

Abstract. Temperature dependent rate coefficients for the gas phase reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one were measured over the temperature range of 298–363 K relative to 1-pentene, 1,3-butadiene and isoprene. Gas Chromatography (GC) was used to measure the concentrations of the organics. The derived temperature dependent Arrhenius expressions are k4-hexen-3-one+Cl (298–363 K) = (2.82 ± 1.76)×10−12exp [(1556 ± 438)/T] cm3 molecule−1 s−1 and k5-hexen-2-one+Cl (298–363 K) = (4.6 ± 2.4)×10−11exp[(646 ± 171)/T] cm3 molecule−1 s−1. The corresponding room temperature rate coefficients are (5.54 ± 0.41)×10−10 cm3 molecule−1 s−1 and (4.00 ± 0.37)×10−10 cm3 molecule−1 s−1 for the reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one respectively. To understand the mechanism of Cl atom reactions with unsaturated ketones, computational calculations were performed for the reactions of Cl atoms with 4-hexen-3-one, 5-hexen-2-one and 3-penten-2-one over the temperature range of 275–400 K using Canonical Variational Transition state theory (CVT) with Small Curvature Tunneling (SCT) in combination with CCSD(T)/6-31+G(d, p)//MP2/6-311++G(d, p) level of theory. Atmospheric implications, reaction mechanism and feasibility of the title reactions are discussed in this manuscript.


2020 ◽  
Author(s):  
Zoi Salta ◽  
Jacopo Lupi ◽  
Vincenzo Barone ◽  
Oscar Ventura

<div> Elucidation of the oxidation mechanism of naturally emitted reduced sulfur compounds, especially dimethyl sulfide, plays a central role in understanding background acid precipitation in the natural environment. Most frequently, theoretical studies of the addition and H-elimination reactions of dimethyl sulfide with hydroxyl radicals are studied considering the presence of oxygen that further reacts with the radicals formed in the initial steps. Although the reaction of intermediate species with additional hydroxyl radicals has been considered as part of the global mechanism of oxidation, few if any attention has been dedicated to the possibility of reactions of the initial radicals with a second •OH molecule. In this work we performed a computational study using quantum-chemical methods, of the mechanism of H-abstraction from dimethyl sulfide under normal atmospheric conditions and in reaction chambers at different O2 partial pressure, including complete absence of oxygen. Additionally, important rate coefficients were computed using canonical and variational transition state theory. The rate coefficient for abstraction affords a 4.72 x 10-12 cm3 molecule1 s-1 value, very close to the most recent experimental one (4.13 x 10-12 cm3 molecule-1 s-1). According to our best results, the initial methyl thiomethyl radical was obtained at -25.2 kcal/mol (experimentally -22.4 kcal/mol), and four important paths were identified on the potential energy surface. From the interplay of thermochemical and kinetic arguments, it was possible to demonstrate that the preferred product of the reaction of dimethyl sulfide with two hydroxyl radicals, is actually dimethyl sulfoxide. </div><div> </div>


Sign in / Sign up

Export Citation Format

Share Document