scholarly journals Interpretation of High-resolution Airborne Magnetic Data of Offshore Campos Basin and Onshore Adjacent Basement

2008 ◽  
Author(s):  
Juarez Lourenço ◽  
Paulo T. L. Menezes ◽  
Valeria C. F. Barbosa
2014 ◽  
Vol 2 (4) ◽  
pp. SJ35-SJ45 ◽  
Author(s):  
Juarez Lourenço ◽  
Paulo T. L. Menezes ◽  
Valeria C. F. Barbosa

We interpreted northwest-trending transfer faults whose extensions are not entirely mapped in the Precambrian basement of the onshore and offshore Campos Basin. To enhance the subtle northwest–southeast lineaments not clearly seen in the total-field data, we reprocessed and merged two airborne magnetic data sets aiming at producing a single merged magnetic data set. Next, we applied a directional filter to these integrated magnetic data. Finally, we applied a multiscale edge detection method to these filtered data. This combination allowed the detection of edges and ridges that are used to produce several northwest–southeast lineations. We interpreted these northwest-trending lineations as magnetic expressions of transfer faults that cut across the onshore adjacent basement of the Campos Basin to the shallow and deep Campos Basin waters. These interpreted northwest-trending faults suggested the continuity of the known northwest-striking transfer faults in the deep Campos Basin waters toward the shallow Campos Basin waters and the adjacent continent. Moreover, our interpreted northwest-trending faults revealed the control of several known oilfields in the Campos Basin. This result supported the hypothesis of the influence of the northwest–southeast-trending transfer faults on the petroleum system of Campos Basin, which were reactivated in the Tertiary providing a pathway for the turbidite sedimentation, reworking, and redistribution of several deepwater reservoirs. In addition, it was hypothesized that this faulting system controlled the hydrocarbon migration paths from the presalt source rocks through salt windows into basal suprasalt layers.


2002 ◽  
Author(s):  
Jianghai Xia ◽  
William E. Doll ◽  
Richard D. Miller ◽  
T. Jeffrey Gamey

2017 ◽  
Vol 64 (4) ◽  
pp. 227-241
Author(s):  
Oluwaseun Tolutope Olurin

AbstractInterpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.


2018 ◽  
Vol 2018 (1) ◽  
pp. 1-1
Author(s):  
Peter Milligan ◽  
Larysa Halas ◽  
Ken Lawrie ◽  
Andrew McPherson ◽  
Martin Smith ◽  
...  

2009 ◽  
Author(s):  
Ray W. Sliter ◽  
Peter J. Triezenberg ◽  
Patrick E. Hart ◽  
Janet T. Watt ◽  
Samuel Y. Johnson ◽  
...  

Author(s):  
Thorkild M. Rasmussen ◽  
Leif Thorning

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, T. M., & Thorning, L. (1999). Airborne geophysical surveys in Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 34-38. https://doi.org/10.34194/ggub.v183.5202 _______________ Airborne geophysical surveying in Greenland during 1998 consisted of a magnetic project referred to as ‘Aeromag 1998’ and a combined electromagnetic and magnetic project referred to as ‘AEM Greenland 1998’. The Government of Greenland financed both with administration managed by the Geological Survey of Denmark and Greenland (GEUS). With the completion of the two projects, approximately 305 000 line km of regional high-resolution magnetic data and approximately 75 000 line km of detailed multiparameter data (electromagnetic, magnetic and partly radiometric) are now available from government financed projects. Figure 1 shows the location of the surveyed areas with highresolution geophysical data together with the area selected for a magnetic survey in 1999. Completion of the two projects was marked by the release of data on 1 March, 1999. The data are included in the geoscientific databases at the Survey for public use; digital data and maps may be purchased from the Survey.


Sign in / Sign up

Export Citation Format

Share Document