scholarly journals An efficient derivative free iterative method for solving systems of nonlinear equations

2013 ◽  
Vol 7 (2) ◽  
pp. 390-403 ◽  
Author(s):  
Janak Sharma ◽  
Himani Arora

We present a derivative free method of fourth order convergence for solving systems of nonlinear equations. The method consists of two steps of which first step is the well-known Traub's method. First-order divided difference operator for functions of several variables and direct computation by Taylor's expansion are used to prove the local convergence order. Computational efficiency of new method in its general form is discussed and is compared with existing methods of similar nature. It is proved that for large systems the new method is more efficient. Some numerical tests are performed to compare proposed method with existing methods and to confirm the theoretical results.

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

Based on Traub-Steffensen method, we present a derivative free three-step family of sixth-order methods for solving systems of nonlinear equations. The local convergence order of the family is determined using first-order divided difference operator for functions of several variables and direct computation by Taylor's expansion. Computational efficiency is discussed, and a comparison between the efficiencies of the proposed techniques with the existing ones is made. Numerical tests are performed to compare the methods of the proposed family with the existing methods and to confirm the theoretical results. It is shown that the new family is especially efficient in solving large systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

We present iterative methods of convergence order three, five, and six for solving systems of nonlinear equations. Third-order method is composed of two steps, namely, Newton iteration as the first step and weighted-Newton iteration as the second step. Fifth and sixth-order methods are composed of three steps of which the first two steps are same as that of the third-order method whereas the third is again a weighted-Newton step. Computational efficiency in its general form is discussed and a comparison between the efficiencies of proposed techniques with existing ones is made. The performance is tested through numerical examples. Moreover, theoretical results concerning order of convergence and computational efficiency are verified in the examples. It is shown that the present methods have an edge over similar existing methods, particularly when applied to large systems of equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
F. Soleymani ◽  
M. Sharifi ◽  
S. Shateyi ◽  
F. Khaksar Haghani

A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class ofm-step methods with order of convergencem+1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing methods are included.


2019 ◽  
Vol 17 (1) ◽  
pp. 1567-1598
Author(s):  
Tianbao Liu ◽  
Xiwen Qin ◽  
Qiuyue Li

Abstract In this paper, we derive and analyze a new one-parameter family of modified Cauchy method free from second derivative for obtaining simple roots of nonlinear equations by using Padé approximant. The convergence analysis of the family is also considered, and the methods have convergence order three. Based on the family of third-order method, in order to increase the order of the convergence, a new optimal fourth-order family of modified Cauchy methods is obtained by using weight function. We also perform some numerical tests and the comparison with existing optimal fourth-order methods to show the high computational efficiency of the proposed scheme, which confirm our theoretical results. The basins of attraction of this optimal fourth-order family and existing fourth-order methods are presented and compared to illustrate some elements of the proposed family have equal or better stable behavior in many aspects. Furthermore, from the fractal graphics, with the increase of the value m of the series in iterative methods, the chaotic behaviors of the methods become more and more complex, which also reflected in some existing fourth-order methods.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 891 ◽  
Author(s):  
Janak Raj Sharma ◽  
Deepak Kumar ◽  
Lorentz Jäntschi

We propose a derivative-free iterative method with fifth order of convergence for solving systems of nonlinear equations. The scheme is composed of three steps, of which the first two steps are that of third order Traub-Steffensen-type method and the last is derivative-free modification of Chebyshev’s method. Computational efficiency is examined and comparison between the efficiencies of presented technique with existing techniques is performed. It is proved that, in general, the new method is more efficient. Numerical problems, including those resulting from practical problems viz. integral equations and boundary value problems, are considered to compare the performance of the proposed method with existing methods. Calculation of computational order of convergence shows that the order of convergence of the new method is preserved in all the numerical examples, which is not so in the case of some of the existing higher order methods. Moreover, the numerical results, including the CPU-time consumed in the execution of program, confirm the accurate and efficient behavior of the new technique.


Sign in / Sign up

Export Citation Format

Share Document