scholarly journals On a Reduced Cost Higher Order Traub-Steffensen-Like Method for Nonlinear Systems

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 891 ◽  
Author(s):  
Janak Raj Sharma ◽  
Deepak Kumar ◽  
Lorentz Jäntschi

We propose a derivative-free iterative method with fifth order of convergence for solving systems of nonlinear equations. The scheme is composed of three steps, of which the first two steps are that of third order Traub-Steffensen-type method and the last is derivative-free modification of Chebyshev’s method. Computational efficiency is examined and comparison between the efficiencies of presented technique with existing techniques is performed. It is proved that, in general, the new method is more efficient. Numerical problems, including those resulting from practical problems viz. integral equations and boundary value problems, are considered to compare the performance of the proposed method with existing methods. Calculation of computational order of convergence shows that the order of convergence of the new method is preserved in all the numerical examples, which is not so in the case of some of the existing higher order methods. Moreover, the numerical results, including the CPU-time consumed in the execution of program, confirm the accurate and efficient behavior of the new technique.

2018 ◽  
Vol 24 (1) ◽  
pp. 3
Author(s):  
Himani Arora ◽  
Juan Torregrosa ◽  
Alicia Cordero

In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Pták method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3 r + 6 , r = 0 , 1 , 2 , … . The sixth order method is the special case of this multi-step scheme for r = 0 . The family gives a four-step ninth order method for r = 1 . As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.


2018 ◽  
Vol 14 (2) ◽  
pp. 7631-7639
Author(s):  
Rajinder Thukral

There are two aims of this paper, firstly, we present an improvement of the classical Simpson third-order method for finding zeros a nonlinear equation and secondly, we introduce a new formula for approximating second-order derivative. The new Simpson-type method is shown to converge of the order four.  Per iteration the new method requires same amount of evaluations of the function and therefore the new method has an efficiency index better than the classical Simpson method.  We examine the effectiveness of the new fourth-order Simpson-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons is made with classical Simpson method to show the performance of the presented method.


Filomat ◽  
2021 ◽  
Vol 35 (3) ◽  
pp. 723-730
Author(s):  
Wei Ma ◽  
Liuqing Hua

In this paper, we present a two-step Ulm-type method to solve systems of nonlinear equations without computing Jacobian matrices and solving Jacobian equations. we prove that the two-step Ulm-type method converges locally to the solution with R-convergence rate 3. Numerical implementations demonstrate the effectiveness of the new method.


2013 ◽  
Vol 7 (2) ◽  
pp. 390-403 ◽  
Author(s):  
Janak Sharma ◽  
Himani Arora

We present a derivative free method of fourth order convergence for solving systems of nonlinear equations. The method consists of two steps of which first step is the well-known Traub's method. First-order divided difference operator for functions of several variables and direct computation by Taylor's expansion are used to prove the local convergence order. Computational efficiency of new method in its general form is discussed and is compared with existing methods of similar nature. It is proved that for large systems the new method is more efficient. Some numerical tests are performed to compare proposed method with existing methods and to confirm the theoretical results.


2018 ◽  
Vol 9 (2) ◽  
pp. 143-152
Author(s):  
Hamid Esmaeili ◽  
Raziyeh Erfanifar ◽  
Mahdis Rashidi

AbstractA new Schulz-type method to compute the Moore–Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method always converge with fourth-order. A wide set of numerical comparisons of the proposed method with nine higher order methods shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods. For each of sizes{n\times n}and{n\times(n+10)},{n=200,400,600,800,1000,1200}, ten random matrices were chosen to make these comparisons.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 65 ◽  
Author(s):  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Clemente Cesarano

Numerous higher-order methods with derivative evaluations are accessible in the literature for computing multiple zeros. However, higher-order methods without derivatives are very rare for multiple zeros. Encouraged by this fact, we present a family of third-order derivative-free iterative methods for multiple zeros that require only evaluations of three functions per iteration. Convergence of the proposed class is demonstrated by means of using a graphical tool, namely basins of attraction. Applicability of the methods is demonstrated through numerical experimentation on different functions that illustrates the efficient behavior. Comparison of numerical results shows that the presented iterative methods are good competitors to the existing techniques.


Sign in / Sign up

Export Citation Format

Share Document