scholarly journals What is the best fractional derivative to fit data?

2017 ◽  
Vol 11 (2) ◽  
pp. 358-368 ◽  
Author(s):  
Ricardo Almeida

The aim of this work is to show, based on concrete data observation, that the choice of the fractional derivative when modelling a problem is relevant for the accuracy of a method. Using the least squares fitting technique, we determine the order of the fractional differential equation that better describes the experimental data, for different types of fractional derivatives.

2020 ◽  
Vol 23 (4) ◽  
pp. 1188-1207
Author(s):  
J. Vanterler da C. Sousa ◽  
Mouffak Benchohra ◽  
Gaston M. N’Guérékata

AbstractThis paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.


2006 ◽  
Vol 2006 ◽  
pp. 1-18 ◽  
Author(s):  
Katica (Stevanovic) Hedrih

We considered the problem on transversal oscillations of two-layer straight bar, which is under the action of the lengthwise random forces. It is assumed that the layers of the bar were made of nonhomogenous continuously creeping material and the corresponding modulus of elasticity and creeping fractional order derivative of constitutive relation of each layer are continuous functions of the length coordinate and thickness coordinates. Partial fractional differential equation and particular solutions for the case of natural vibrations of the beam of creeping material of a fractional derivative order constitutive relation in the case of the influence of rotation inertia are derived. For the case of natural creeping vibrations, eigenfunction and time function, for different examples of boundary conditions, are determined. By using the derived partial fractional differential equation of the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, corresponding to thenth shape of the beam elastic form, forced by a bounded axially noise excitation, is investigated. By the use of S. T. Ariaratnam's idea, as well as of the averaging method, the top Lyapunov exponent is evaluated asymptotically when the intensity of excitation process is small.


2020 ◽  
Vol 23 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Latif A-M. Hanna ◽  
Maryam Al-Kandari ◽  
Yuri Luchko

AbstractIn this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdélyi-Kober fractional integral in terms of its convolution in the Dimovski sense. For this convolution, we also determine the divisors of zero. These both results are then used for construction of an operational method for solving an initial value problem for a fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives defined on the positive semi-axis. Its solution is obtained in terms of the four-parameters Wright function of the second kind. The same operational method can be employed for other fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hoa Ngo Van ◽  
Vu Ho

The aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are discussed. Finally, we provide an example to demonstrate our main results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yanning Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for ap-Laplacian conformable fractional differential equation boundary value problem on time scaleT:  Tα(Tαup-2Tα(u))(t)=∇F(σ(t),u(σ(t))),Δ-a.e.  t∈a,bTκ2,u(a)-u(b)=0,Tα(u)(a)-Tα(u)(b)=0,whereTα(u)(t)denotes the conformable fractional derivative ofuof orderαatt,σis the forward jump operator,a,b∈T,  0<a<b,  p>1, andF:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.


Sign in / Sign up

Export Citation Format

Share Document