scholarly journals The relationship between end-tidal CO2, mean arterial blood pressure and neuroendocrine response in canine haemorrhagic shock

2006 ◽  
Vol 56 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Seliskar Alenka ◽  
Nemec Alenka ◽  
Butinar J.
1986 ◽  
Vol 251 (3) ◽  
pp. H612-H618 ◽  
Author(s):  
D. N. Darlington ◽  
J. Shinsako ◽  
M. F. Dallman

Hemorrhages of various magnitudes were performed on conscious rats, and arterial pressure, heart rate, and plasma levels of adrenocorticotropin hormone (ACTH), epinephrine, and norepinephrine were measured. Eight rats were prepared with chronic femoral arterial cannulas and received a 10, 15, or 20 ml/kg X 3 min hemorrhage in random order on day 4, 7, or 10 after surgery. Mean arterial blood pressure, heart rate, and plasma ACTH, epinephrine, and norepinephrine concentrations were determined before and 20 min after hemorrhage. Arterial blood pressure decreased significantly immediately after each hemorrhage and slowly recovered over the next 20 min. Heart rate did not change during the 10 ml/kg X 3 min hemorrhage but decreased significantly after 15 and 20 ml/kg X 3 min hemorrhages. Plasma ACTH and epinephrine levels increased significantly 20 min after the 15 and 20 ml/kg X 3 min hemorrhages but not after 10 ml/kg X 3 min hemorrhage. Norepinephrine increased significantly 20 min after the 20 ml/kg X 3 min hemorrhage but not after the 10 or 15 ml/kg X 3 min hemorrhage. There was no significant effect of time and repeated hemorrhages on resting levels of plasma ACTH, epinephrine, norepinephrine, osmolality, or proteins. Since hemorrhage leads to a fall in arterial pressure and a subsequent rise in plasma ACTH, the relationship between plasma ACTH and mean arterial blood pressure during hemorrhage was examined in both conscious and acutely prepared pentobarbital sodium-anesthetized rats.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 80 (8) ◽  
pp. 819-827 ◽  
Author(s):  
Andrea Vovk ◽  
David A Cunningham ◽  
John M Kowalchuk ◽  
Donald H Paterson ◽  
James Duffin

This study characterized cerebral blood flow (CBF) responses in the middle cerebral artery to PCO2ranging from 30 to 60 mmHg (1 mmHg = 133.322 Pa) during hypoxia (50 mmHg) and hyperoxia (200 mmHg). Eight subjects (25 ± 3 years) underwent modified Read rebreathing tests in a background of constant hypoxia or hyperoxia. Mean cerebral blood velocity was measured using a transcranial Doppler ultrasound. Ventilation (VE), end-tidal PCO2 (PETCO2), and mean arterial blood pressure (MAP) data were also collected. CBF increased with rising PETCO2 at two rates, 1.63 ± 0.21 and 2.75 ± 0.27 cm·s–1·mmHg–1 (p < 0.05) during hypoxic and 1.69 ± 0.17 and 2.80 ± 0.14 cm·s–1·mmHg–1 (p < 0.05) during hyperoxic rebreathing. VE also increased at two rates (5.08 ± 0.67 and 10.89 ± 2.55 L·min–1·mmHg–1 and 3.31 ± 0.50 and 7.86 ± 1.43 L·min–1·mmHg–1) during hypoxic and hyperoxic rebreathing. MAP and PETCO2 increased linearly during both hypoxic and hyperoxic rebreathing. The breakpoint separating the two-component rise in CBF (42.92 ± 1.29 and 49.00 ± 1.56 mmHg CO2 during hypoxic and hyperoxic rebreathing) was likely not due to PCO2 or perfusion pressure, since PETCO2 and MAP increased linearly, but it may be related to VE, since both CBF and VE exhibited similar responses, suggesting that the two responses may be regulated by a common neural linkage. Key words: brain blood flow, middle cerebral artery, ventilation, mean arterial blood pressure.


2007 ◽  
Vol 34 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Sanjay Subramanian ◽  
Murat Yilmaz ◽  
Ahmer Rehman ◽  
Rolf D. Hubmayr ◽  
Bekele Afessa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document