scholarly journals Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts

2017 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Yajing Zhang ◽  
Yu Zhang ◽  
Fu Ding ◽  
Kangjun Wang ◽  
Wang Xiaolei ◽  
...  

A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD), N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME) from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3%) and DME selectivity (57.3%) were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.

2017 ◽  
Vol 42 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Yubo Ma ◽  
Zhixian Gao ◽  
Wumanjiang Eli

Rh catalysts supported on Fe2O3, Co3O4 and Fe2O3–Co3O4 mixed oxide were prepared by the co-precipitation method. The effect of the support on the performance of the Rh catalysts for the hydroformylation of dicyclopentadiene was investigated using X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, H2-temperature-programmed desorption and Brunauer–Emmett–Teller analysis techniques. The results indicated that the Fe2O3–Co3O4 supported catalyst had a higher dispersion of Rh and thus more Rh+ sites. As a result, the Fe2O3–Co3O4 supported Rh catalyst exhibited higher activity compared with counterparts supported on Fe2O3 and Co3O4.


Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 283 ◽  
Author(s):  
Lyuba Ilieva ◽  
Anna Venezia ◽  
Petya Petrova ◽  
Giuseppe Pantaleo ◽  
Leonarda Liotta ◽  
...  

Mono metallic and bimetallic Pd (1 wt. %)–Au (3 wt. %) catalysts were prepared using two ceria supports doped with 1 wt. % Y2O3. Yttrium was added by impregnation or co-precipitation. The catalyst synthesis was carried out by deposition–precipitation method, with sequential deposition–precipitation of palladium over previously loaded gold in the case of the bimetallic samples. The obtained materials, characterized by X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) techniques, were tested in the complete benzene oxidation (CBO). The results of the characterization analyses and the catalytic performance pointed to a close relationship between structural, redox, and catalytic properties of mono and bimetallic catalysts. Among the monometallic systems, Pd catalysts were more active as compared to the corresponding Au catalysts. The bimetallic systems exhibited the best combustion activity. In particular, over Pd–Au supported on Y-impregnated ceria, 100% of benzene conversion towards total oxidation at the temperature of 150 °C was obtained. Comparison of surface sensitive XPS results of fresh and spent catalysts ascertained the redox character of the reaction.


2021 ◽  
Vol 21 (12) ◽  
pp. 6082-6087
Author(s):  
Chih-Wei Tang ◽  
Hsiang-Yu Shih ◽  
Ruei-Ci Wu ◽  
Chih-Chia Wang ◽  
Chen-Bin Wang

The increase of harmful carbon monoxide (CO) caused by incomplete combustion can affect human health even lead to suffocation. Therefore reducing the CO discharged by vehicles or factories is urgent to improve the air quality. The spinel cobalt (II, III) oxide (Co3O4) is an active catalyst for CO abatement. In this study, we tried to fabricate dispersing Co3O4 via the dispersion-precipitation method with acetic acid, formic acid, and oxalic acid as the chelating dispersants. Then, the asprepared samples were calcined at 300 ºC for 4 h to obtain active catalysts, and assigned as Co(A), Co(F) and Co(O) respectively, the amount of the dispersants used are labeled as I (0.12 mole), II (0.03 mole) and III (0.01 mole). For comparison, another CoAP sample was prepared via alkaliinduced precipitation and calcined at 300 ºC. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning electron microscope (SEM), and nitrogen adsorption/desorption system, and the catalytic activity focused on the CO oxidation. The influence of chelating dispersant on the performance of abatement of CO was pursued in this study. Apparently, the results showed that the chelating dispersant can influence the catalytic activity of CO abatement. An optimized ratio of dispersant can improve the performance, while excess dispersant lessens the surface area and catalytic performance. The series of Co(O) samples can easily donate the active oxygen since the labile Co–O bonding and indicated the preferential performance than both Co(A) and Co(F) samples. The nanorod Co(O)-II showed preferential for CO oxidation, T50 and T90 approached 96 and 127 ºC, respectively. Also, the favorable durability of Co(O)-II sample maintains 95% conversion still for 50 h at 130 ºC and does not emerge deactivation.


2013 ◽  
Vol 664 ◽  
pp. 515-520
Author(s):  
Chih Wei Tang ◽  
Jiunn Jer Hwang ◽  
Shie Hsiung Lin ◽  
Chin Chun Chung

The NiO-ZnO binary materials had been prepared by co-precipitation method. The weight percent of nickel of NiO-ZnO materials were 5, 10 and 20; they were pretreated under air at temperature of 300, 500 and 700°C, respectively. The characterization of NiO-ZnO materials were the thermal gravity analysis(TGA), X-ray diffraction(XRD), N2 adsorption-desorption at 77K, scaning electron microscope(SEM) and temperature-programmed reduction(TPR). The results revealed that surface areas of NiO-ZnO materials order from large to small were 20NiZn(OH)x(66 m2·g-1) > 10NiZn(OH)x(34 m2·g-1) > 5NiZn(OH)x(9 m2·g-1) after being calcined at the temperature of 500°C. Further, NiO-ZnO materials had two main reductive peaks at 390-415°C and 560-657°C, respectively. In all NiO-ZnO materials, 20NiZn(OH)x-C500 material had the highest surface area and the best interaction between NiO and ZnO.


2012 ◽  
Vol 581-582 ◽  
pp. 313-316
Author(s):  
Xue Qiao Zhang ◽  
Zhi Xiang Ye ◽  
Cheng Hua Xu ◽  
Ming Zhao ◽  
Yao Qiang Chen

Barium oxide was introduced to modify Palladium catalysts supported on CeO2–ZrO2-La2O3-Al2O3 (CZLA) by impregnation and co-precipitation. methods. Various techniques, including X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS), were employed to characterize the physicochemical properties of BaO-modified Pd-only catalyst. Catalytic activity for methanol, CO, C3H8 and NO conversions showed that BaO-modified catalyst prepared by impregnation method exhibited the best performance for methanol, C3H8 and NO removals, while the catalyst prepared by co-precipitation method was in favor of CO oxidation. Combined with the results of XRD, H2-TPR and XPS, it is concluded that the co-existence of PdO and Pd-O-Ce active species by impregnation played an important role in the methanol, C3H8 and NO removals, while the higher dispersion of palladium and improved reducibility were mostly favorable to the CO oxidation. The conversion of NO was co-effected by tow active species and the formation of Ba2AlLaO5 mixed oxide.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Manh B. Nguyen ◽  
Giang H. Le ◽  
Trang T. T. Pham ◽  
Giang T. T. Pham ◽  
Trang T. T. Quan ◽  
...  

Catalytic ozonation is a new method used for removal of NH4OH solution. Therefore, high catalytic performance (activity and selectivity) should be achieved. In this work, we report the synthesis and catalytic performance of Fe2O3-Co3O4 modified dolomite in the catalytic ozonation of NH4OH solution. Dolomite was successfully activated and modified with Fe2O3 and Co3O4. Firstly, dolomite was activated by heating at 800°C for 3 h and followed by KOH treatment. Activated dolomite was modified with Fe2O3 by the atomic implantation method using FeCl3 as Fe source. Fe2O3 modified dolomite was further modified with Co3O4 by precipitation method. The obtained catalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), N2 adsorption–desorption (BET), and temperature-programmed reduction (H2-TPR). From SEM image, it was revealed that nano-Fe2O3 and Co3O4 particles with the size of 80–120 nm. Catalytic performance of activated dolomite, Fe2O3 modified dolomite, and Fe2O3-Co3O4 modified dolomite in catalytic ozonation of NH4+ solution was investigated and evaluated. Among 3 tested catalysts, Fe2O3-Co3O4 modified dolomite has the highest NH4+ conversion (96%) and N2 selectivity (77.82%). Selectivity toward N2 over the catalyst was explained on the basis of bond strength M-O in oxides through the standard enthalpy ΔH°f of oxide. Catalyst with lower ΔH°f value has higher N2 selectivity and the order is the following: Co3O4 (ΔH°f of 60 kcal (mole O)) > Fe2O3 (ΔH°f of 70 kcal (mole O)) > MgO (ΔH°f of 170 kcal (mole O)). Moreover, high reduction ability of Fe2O3-Co3O4 modified dolomite could improve the N2 selectivity by the reduction of NO3- to N2 gas.


2013 ◽  
Vol 734-737 ◽  
pp. 2364-2368
Author(s):  
Xiao Guang Ren ◽  
Fu Xia Li ◽  
Peng Li ◽  
Wei Hou

In this study, the hexaaluminate catalyst SrMnMAl10O19-δ(M= Cd、Co、Cu 、Fe、Ni、Zn、Zr、Cr and Y)and SrMnFexAl11-xO19-δ(x=1, 2, 4, 6, 8)have been prepared by co-precipitation method. The catalysts were characterized by powder X-ray diffraction (XRD), surface area (BET), hydrogen temperature programmed reduction (H2-TPR). The reduction catalyst properties of hexaaluminate for deNOx were evaluated by using devices of micro-evaluation. The results showed that the CO could remove NOx very well. The hexaaluminate not only have a good catalytic performance, but also can form a complete crystal calcined at 1200 °C for 4 h.


2019 ◽  
Vol 72 (6) ◽  
pp. 417
Author(s):  
Changna Gan ◽  
Yunhao Wang ◽  
Chenliang Ye ◽  
Cuili Guo

A series of CuZnAl catalysts derived from layered double hydroxide precursors with different Cu/Zn molar ratios were synthesised by a co-precipitation method for methyl acetate hydrogenation. The best catalytic performance was obtained when the Cu/Zn molar ratio reached 0.25:1. After fixing the Cu/Zn molar ratio at 0.25:1, the effect of aging methods, including ultrasound, high shear mixer stirring, and magnetic stirring, were investigated, which showed that 0.25CuZnAl-u and 0.25CuZnAl-h exhibited a higher conversion and selectivity than that of 0.25CuZnAl-m, especially under low reaction temperatures. The physicochemical properties of the CuZnAl catalysts were characterised by X-ray diffraction, inductively coupled plasma–atomic emission spectroscopy, N2 physisorption, N2O chemisorption, transmission electron microscopy, H2-temperature-programmed reduction, X-ray photoelectron spectroscopy, and H2-temperature-programmed desorption. It was found that compared with 0.25CuZnAl-m, 0.25CuZnAl-u and 0.25CuZnAl-h possessed a stronger interaction between Cu and the support, smaller copper particle size, and higher copper dispersion, which improved the catalytic performance.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2196
Author(s):  
Cristian E. Simion ◽  
Ovidiu G. Florea ◽  
Mihaela Florea ◽  
Florentina Neaţu ◽  
Ştefan Neaţu ◽  
...  

Mesoporous CeO2:Mn3O4 materials (3:7 and 7:3 molar ratio) were prepared by co-precipitation and deposited as porous thick films over alumina (Al2O3) planar substrate provided with Pt meander. The aim was oriented towards detecting low levels methane (CH4) at moderate operating temperatures. Herein we demonstrated that the sensitivity of catalytic micro-converters (CMCs) towards a given peak of CH4 concentration corresponds to specific gas-surface interaction phenomena. More precisely, a transition from thermal conductivity to combustion rate is likely to occur when CMCs are operated under real atmospheric conditions (normal pressure, presence of relative humidity, and constant operating temperature). The response to CH4 was analyzed over different gas flows and different gas concentrations under the same operating regime. The materials were fully characterized by adsorption-desorption isotherms, H2-Temperature Programmed Reduction (H2-TPR), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Raman spectroscopies. Thus, the applicative aspect of using CeO2:Mn3O4 as moderate temperature CMC for CH4 detection is brought to the fore.


2020 ◽  
Vol 45 ◽  
pp. 146867831982573
Author(s):  
Hongyi Li ◽  
Yubo Ma

A series of magnetically separable catalysts based on Ru–Ni bimetallic compounds supported on Fe3O4 nanoparticles was prepared by the co-precipitation method. These catalysts were evaluated for diformyltricyclodecanes hydrogenation reactions, achieving 97% tricyclodecanedimethylol selectivity at 98% diformyltricyclodecanes conversion under mild conditions. The catalyst could be easily recovered by using the magnetic property of the iron oxide support. The catalysts were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, and temperature-programmed reduction. These complementary characterization results suggested that the superior catalytic activity may be derived from the delicate synergy between Ru and Ni species.


Sign in / Sign up

Export Citation Format

Share Document