scholarly journals Magnetically separable Fe3O4-supported Ru–Ni bimetallic catalysts for diformyltricyclodecanes hydrogenation to value-added fine chemicals

2020 ◽  
Vol 45 ◽  
pp. 146867831982573
Author(s):  
Hongyi Li ◽  
Yubo Ma

A series of magnetically separable catalysts based on Ru–Ni bimetallic compounds supported on Fe3O4 nanoparticles was prepared by the co-precipitation method. These catalysts were evaluated for diformyltricyclodecanes hydrogenation reactions, achieving 97% tricyclodecanedimethylol selectivity at 98% diformyltricyclodecanes conversion under mild conditions. The catalyst could be easily recovered by using the magnetic property of the iron oxide support. The catalysts were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, and temperature-programmed reduction. These complementary characterization results suggested that the superior catalytic activity may be derived from the delicate synergy between Ru and Ni species.

2017 ◽  
Vol 42 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Yubo Ma ◽  
Zhixian Gao ◽  
Wumanjiang Eli

Rh catalysts supported on Fe2O3, Co3O4 and Fe2O3–Co3O4 mixed oxide were prepared by the co-precipitation method. The effect of the support on the performance of the Rh catalysts for the hydroformylation of dicyclopentadiene was investigated using X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, H2-temperature-programmed desorption and Brunauer–Emmett–Teller analysis techniques. The results indicated that the Fe2O3–Co3O4 supported catalyst had a higher dispersion of Rh and thus more Rh+ sites. As a result, the Fe2O3–Co3O4 supported Rh catalyst exhibited higher activity compared with counterparts supported on Fe2O3 and Co3O4.


2017 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Yajing Zhang ◽  
Yu Zhang ◽  
Fu Ding ◽  
Kangjun Wang ◽  
Wang Xiaolei ◽  
...  

A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD), N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME) from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3%) and DME selectivity (57.3%) were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.


2012 ◽  
Vol 1449 ◽  
Author(s):  
Chien-Tsung Wang ◽  
Huan-Yu Chen ◽  
Yu-Chung Chen

ABSTRACTGold species on an oxide support possess variable electronic structures via charge transition so as to increase their chemical redox activity. They are also viably promising for use to enhance gas-sensing response when being exploited in a solid state gas sensor. The synthesis method of the gold-loaded materials plays a crucial role in the functionality. In this paper, we report two types of gold/tin oxide based nanopowders prepared by co-precipitation method and by deposition-precipitation method, respectively. They were evaluated as sensing elements in a semiconductor carbon monoxide (CO) gas sensor. Effects of the material type and CO concentration on sensor response were investigated. Their structural characterizations were done by X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. Results demonstrate the surface gold species effective to facilitate CO oxidation in gas atmosphere and promote low-temperature sensor performance.


2012 ◽  
Vol 581-582 ◽  
pp. 313-316
Author(s):  
Xue Qiao Zhang ◽  
Zhi Xiang Ye ◽  
Cheng Hua Xu ◽  
Ming Zhao ◽  
Yao Qiang Chen

Barium oxide was introduced to modify Palladium catalysts supported on CeO2–ZrO2-La2O3-Al2O3 (CZLA) by impregnation and co-precipitation. methods. Various techniques, including X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS), were employed to characterize the physicochemical properties of BaO-modified Pd-only catalyst. Catalytic activity for methanol, CO, C3H8 and NO conversions showed that BaO-modified catalyst prepared by impregnation method exhibited the best performance for methanol, C3H8 and NO removals, while the catalyst prepared by co-precipitation method was in favor of CO oxidation. Combined with the results of XRD, H2-TPR and XPS, it is concluded that the co-existence of PdO and Pd-O-Ce active species by impregnation played an important role in the methanol, C3H8 and NO removals, while the higher dispersion of palladium and improved reducibility were mostly favorable to the CO oxidation. The conversion of NO was co-effected by tow active species and the formation of Ba2AlLaO5 mixed oxide.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sasikala Sundar ◽  
V. Ganesh

Abstract Magnetic nanoparticles of iron oxide (γ-Fe2O3) have been prepared using bio-assisted method and their application in the field of biosensors is demonstrated. Particularly in this work, different nanostructures of γ-Fe2O3 namely nanospheres (NS), nanograsses (NG) and nanowires (NW) are prepared using a bio-surfactant namely Furostanol Saponin (FS) present in Fenugreek seeds extract through co-precipitation method by following “green” route. Three distinct morphologies of iron oxide nanostructures possessing the same crystal structure, magnetic properties, and varied size distribution are prepared and characterized. The resultant materials are analyzed using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Moreover, the effect of reaction time and concentration of FS on the resultant morphologies of γ-Fe2O3 nanostructures are systematically investigated. Among different shapes, NWs and NSs of γ-Fe2O3 are found to exhibit better sensing behaviour for both the individual and simultaneous electrochemical detection of most popular biomarkers namely dopamine (DA) and uric acid (UA). Electrochemical studies reveal that γ-Fe2O3 NWs showed better sensing characteristics than γ-Fe2O3 NSs and NGs in terms of distinguishable voltammetric signals for DA and UA with enhanced oxidation current values. Differential pulse voltammetric studies exhibit linear dependence on DA and UA concentrations in the range of 0.15–75 µM and 5 μM – 0.15 mM respectively. The detection limit values for DA and UA are determined to be 150 nM and 5 µM. In addition γ-Fe2O3 NWs modified electrode showed higher sensitivity, reduced overpotential along with good selectivity towards the determination of DA and UA even in the presence of other common interferents. Thus the proposed biosensor electrode is very easy to fabricate, eco-friendly, cheaper and possesses higher surface area suggesting the unique structural patterns of γ-Fe2O3 nanostructures to be a promising candidate for electrochemical bio-sensing and biomedical applications.


Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 283 ◽  
Author(s):  
Lyuba Ilieva ◽  
Anna Venezia ◽  
Petya Petrova ◽  
Giuseppe Pantaleo ◽  
Leonarda Liotta ◽  
...  

Mono metallic and bimetallic Pd (1 wt. %)–Au (3 wt. %) catalysts were prepared using two ceria supports doped with 1 wt. % Y2O3. Yttrium was added by impregnation or co-precipitation. The catalyst synthesis was carried out by deposition–precipitation method, with sequential deposition–precipitation of palladium over previously loaded gold in the case of the bimetallic samples. The obtained materials, characterized by X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) techniques, were tested in the complete benzene oxidation (CBO). The results of the characterization analyses and the catalytic performance pointed to a close relationship between structural, redox, and catalytic properties of mono and bimetallic catalysts. Among the monometallic systems, Pd catalysts were more active as compared to the corresponding Au catalysts. The bimetallic systems exhibited the best combustion activity. In particular, over Pd–Au supported on Y-impregnated ceria, 100% of benzene conversion towards total oxidation at the temperature of 150 °C was obtained. Comparison of surface sensitive XPS results of fresh and spent catalysts ascertained the redox character of the reaction.


2021 ◽  
Vol 16 (1) ◽  
pp. 97-110
Author(s):  
Faris A. Jassim Al-Doghachi ◽  
Diyar M. A. Murad ◽  
Huda S. Al-Niaeem ◽  
Salam H. H. Al-Jaberi ◽  
Surahim Mohamad ◽  
...  

Co/Mg1−XCe3+XO (x = 0, 0.03, 0.07, 0.15; 1 wt% cobalt each) catalysts for the dry reforming of methane (DRM) reaction were prepared using the co-precipitation method with K2CO3 as precipitant. Characterization of the catalysts was achieved by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The role of several reactant and catalyst concentrations, and reaction temperatures (700–900 °C) on the catalytic performance of the DRM reaction was measured in a tubular fixed-bed reactor under atmospheric pressure at various CH4/CO2 concentration ratios (1:1 to 2:1). Using X-ray diffraction, a surface area of 19.2 m2.g−1 was exhibited by the Co/Mg0.85Ce3+0.15O catalyst and MgO phase (average crystallite size of 61.4 nm) was detected on the surface of the catalyst. H2 temperature programmed reaction revealed a reduction of CoO particles to metallic Co0 phase. The catalytic stability of the Co/Mg0.85Ce3+0.15O catalyst was achieved for 200 h on-stream at 900 °C for the 1:1 CH4:CO2 ratio with an H2/CO ratio of 1.0 and a CH4, CO2 conversions of 75% and 86%, respectively. In the present study, the conversion of CH4 was improved (75%–84%) when conducting the experiment at a lower flow of oxygen (1.25%). Finally, the deposition of carbon on the spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. Better anti-coking activity of the reduced catalyst was observed by both, TEM, and TPO-MS analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 


1996 ◽  
Vol 459 ◽  
Author(s):  
A. Ratna Phani ◽  
M. Pelino

ABSTRACTThe present investigation deals with the electrical response of noble metal doped SnO2 to improve the selectivity for Liquid Petroleum Gas (LPG) in the presence of CO and CH4. Addition of small amounts of nobel metals (Pd, Pt and Rh) to the base material SnO2 is carried out by co-precipitation method. X-ray diffraction and X-ray photoelectron spectroscopy studies are carried out to find out the crystalline phase and chemical composition of the SnO2. The sensor element has been tested for cross selectivity to reducing gases by measuring sensitivity versus sintering temperatures and sensitivity versus operating temperatures. The sensor elements with the composition of Pd (1.5 wt%) andPt (1.5 wt%) in the base material SnO2 sintered at 800°C showed high sensitivity towards LPG at an operating temperature of 350°C suggestingthe possibility to utilize the sensor for the detection of LPG.


2017 ◽  
Vol 28 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Chan Wang ◽  
Feng Li ◽  
Zishu Sun ◽  
Qijun Song

Nitric oxide is a frequently encountered pollutant in indoor air. It could have a number of harmful effects on human health even at low concentration. Aiming to improve the indoor air quality, an environment-friendly method was developed for the elimination of nitric oxide at ppm level based on a low temperature effective catalyst potassium-doped copper–manganese oxide (K/Cu-Mn-O). The catalyst was obtained through a co-precipitation method using metal nitrates in aqueous solution and the precipitate was calcinated at 400℃ for 5 h. After impregnation with K, the best catalytic activity was observed for the K/Cu-Mn-O catalyst with a Cu/Mn ratio of 1:2 and surface concentration of doping K 7.03% (7.4 mg/g). The composition and the structure of the catalyst were comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller. The results showed that the potassium doping improved the adsorption ability of catalyst, and promoted the formation of the nitrate salt, and thereby further improved the elimination rate of nitric oxide. Finally, the possible reaction mechanisms are discussed.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 415 ◽  
Author(s):  
Lingjuan Ma ◽  
Hongbin Ma ◽  
Dawei Han ◽  
Mingyue Qiu ◽  
Yafei Guan ◽  
...  

Rod-shaped Cu1Fe9Ox precursor was successfully prepared through an aqueous precipitation method. The shape and phase composition were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that Cu1Fe9Ox is composed of CuFe2O4 and Fe2O3. The reduction performance of Cu1Fe9Ox was studied by in situ XRD and H2 temperature-programmed reduction (H2-TPR). Cu/Fe3O4 nanorod catalyst is obtained through the controllable reduction of Cu1Fe9Ox nanorod, and the formed Cu/Fe3O4 nanorod catalyst does not have low-temperature water gas shift (WGS) activity, but exhibits high-temperature WGS reaction activity. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) studies showed that the main species of copper is Cu+ during the WGS reaction. The interaction between Cu and Fe3O4 rod and phase evolution of Cu species are quite different from Cu/Fe3O4 nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document