scholarly journals MFI-tree: An effective multi-feature index structure for weighted query application

2010 ◽  
Vol 7 (1) ◽  
pp. 139-152 ◽  
Author(s):  
Yunfeng He ◽  
Yu Junqing

Multi-Feature Index Tree (MFI-Tree), a new indexing structure, is proposed to index multiple high-dimensional features of video data for video retrieval through example. MFI-Tree employs tree structure which is beneficial for the browsing application, and retrieves the last level cluster nodes in retrieval application to improve the performance. Aggressive Decided Distance for kNN (ADD-kNN) search algorithm is designed because it can effectively reduce the distance to prune the search space. Experimental results demonstrate that the MFITree and ADD-kNN algorithm have the advantages over sequential scan in performance.

2021 ◽  
pp. 220-231
Author(s):  
Yusuke Arai ◽  
Daichi Amagata ◽  
Sumio Fujita ◽  
Takahiro Hara

Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


2018 ◽  
Vol 15 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Christian Reimer ◽  
Stefania Sciara ◽  
Piotr Roztocki ◽  
Mehedi Islam ◽  
Luis Romero Cortés ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chen Zhang ◽  
Bin Hu ◽  
Yucong Suo ◽  
Zhiqiang Zou ◽  
Yimu Ji

In this paper, we study the challenge of image-to-video retrieval, which uses the query image to search relevant frames from a large collection of videos. A novel framework based on convolutional neural networks (CNNs) is proposed to perform large-scale video retrieval with low storage cost and high search efficiency. Our framework consists of the key-frame extraction algorithm and the feature aggregation strategy. Specifically, the key-frame extraction algorithm takes advantage of the clustering idea so that redundant information is removed in video data and storage cost is greatly reduced. The feature aggregation strategy adopts average pooling to encode deep local convolutional features followed by coarse-to-fine retrieval, which allows rapid retrieval in the large-scale video database. The results from extensive experiments on two publicly available datasets demonstrate that the proposed method achieves superior efficiency as well as accuracy over other state-of-the-art visual search methods.


2021 ◽  
pp. 1-11
Author(s):  
Wang Songyun

With the development of social economy and the improvement of science and technology, digital video on the Internet is increasing rapidly, and it has become a new force to promote the development of the times. Most of these videos are stored in the memory, which poses a great challenge to the research and development of the system. The reader service system is an important part of library service. The library uses it to collect information resources, not just for service and work. The document combines the video of library service, the analysis of video recovery and video software requirements of digital library, puts forward the design goal and conception of video search, and puts forward a foundation. From the video data of digital library, video retrieval experiments are gradually carried out. These experimental results show that the number of enhanced dynamic clustering algorithm increases to ensure the complexity of the image.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-206
Author(s):  
L. Grover ◽  
T. Rudolph

Quantum search is a technique for searching $N$ possibilities for a desired target in $O(\sqrt{N})$ steps. It has been applied in the design of quantum algorithms for several structured problems. Many of these algorithms require significant amount of quantum hardware. In this paper we propose the criterion that an algorithm which requires $O(S)$ hardware should be considered significant if it produces a speedup of better than $O\left(\sqrt{S}\right)$ over a simple quantum search algorithm. This is because a speedup of $O\left(\sqrt{S}\right)$ can be trivially obtained by dividing the search space into $S$ separate parts and handing the problem to $S$ independent processors that do a quantum search (in this paper we drop all logarithmic factors when discussing time/space complexity). Known algorithms for collision and element distinctness exactly saturate the criterion.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Octavio Camarena ◽  
Erik Cuevas ◽  
Marco Pérez-Cisneros ◽  
Fernando Fausto ◽  
Adrián González ◽  
...  

The Locust Search (LS) algorithm is a swarm-based optimization method inspired in the natural behavior of the desert locust. LS considers the inclusion of two distinctive nature-inspired search mechanism, namely, their solitary phase and social phase operators. These interesting search schemes allow LS to overcome some of the difficulties that commonly affect other similar methods, such as premature convergence and the lack of diversity on solutions. Recently, computer vision experiments in insect tracking methods have conducted to the development of more accurate locust motion models than those produced by simple behavior observations. The most distinctive characteristic of such new models is the use of probabilities to emulate the locust decision process. In this paper, a modification to the original LS algorithm, referred to as LS-II, is proposed to better handle global optimization problems. In LS-II, the locust motion model of the original algorithm is modified incorporating the main characteristics of the new biological formulations. As a result, LS-II improves its original capacities of exploration and exploitation of the search space. In order to test its performance, the proposed LS-II method is compared against several the state-of-the-art evolutionary methods considering a set of benchmark functions and engineering problems. Experimental results demonstrate the superior performance of the proposed approach in terms of solution quality and robustness.


2021 ◽  
Author(s):  
ElMehdi SAOUDI ◽  
Said Jai Andaloussi

Abstract With the rapid growth of the volume of video data and the development of multimedia technologies, it has become necessary to have the ability to accurately and quickly browse and search through information stored in large multimedia databases. For this purpose, content-based video retrieval ( CBVR ) has become an active area of research over the last decade. In this paper, We propose a content-based video retrieval system providing similar videos from a large multimedia data-set based on a query video. The approach uses vector motion-based signatures to describe the visual content and uses machine learning techniques to extract key-frames for rapid browsing and efficient video indexing. We have implemented the proposed approach on both, single machine and real-time distributed cluster to evaluate the real-time performance aspect, especially when the number and size of videos are large. Experiments are performed using various benchmark action and activity recognition data-sets and the results reveal the effectiveness of the proposed method in both accuracy and processing time compared to state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document