scholarly journals Semantic representation of multi-platform 3D content

2014 ◽  
Vol 11 (4) ◽  
pp. 1555-1580 ◽  
Author(s):  
Jakub Flotyński ◽  
Krzysztof Walczak

In this paper, a method of semantic representation of multi-platform 3D content is proposed. The use of the semantic web techniques enables content representation that is independent of particular content presentation platforms and may facilitate content creation based on different ontologies and knowledge bases. The proposed method significantly simplifies building 3D content presentations for multiple target platforms in comparison to the available approaches to 3D content creation.

2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


2020 ◽  
Vol 8 (4) ◽  
pp. 411
Author(s):  
Irianto Liko Koten ◽  
Cokorda Rai Adi Pramartha

Bali is an island in Indonesia that is rich in culture, for example, is a traditional dance. The traditional dance performance is diverse from one village to another village in Bali. The traditional Balinese dance knowledge should be captured dan documented well in a digital form so that it can be shared easily to different people and generation across the world. The use of ontology as an information representation technique is the preferred solution in this matter because ontology can be used to enhance the development of semantic applications, especially when dealing with semantic webs. In this project, the ontology was built using Protege ontology development tool.  We follow the methontology ontology development method where this methodology clearly describes each of its activity. In this study, we focus to describe two variants of Balinese traditional dance (Barong dance and Pendet dance). In the future, we expect that more type of dance can be documented using our proposed ontology. Keywords: Balinese Dance, Ontology,Semantic Web


2018 ◽  
Vol 2 ◽  
pp. e25614 ◽  
Author(s):  
Florian Pellen ◽  
Sylvain Bouquin ◽  
Isabelle Mougenot ◽  
Régine Vignes-Lebbe

Xper3 (Vignes Lebbe et al. 2016) is a collaborative knowledge base publishing platform that, since its launch in november 2013, has been adopted by over 2 thousand users (Pinel et al. 2017). This is mainly due to its user friendly interface and the simplicity of its data model. The data are stored in MySQL Relational DBs, but the exchange format uses the TDWG standard format SDD (Structured Descriptive DataHagedorn et al. 2005). However, each Xper3 knowledge base is a closed world that the author(s) may or may not share with the scientific community or the public via publishing content and/or identification key (Kopfstein 2016). The explicit taxonomic, geographic and phenotypic limits of a knowledge base are not always well defined in the metadata fields. Conversely terminology vocabularies, such as Phenotype and Trait Ontology PATO and the Plant Ontology PO, and software to edit them, such as Protégé and Phenoscape, are essential in the semantic web, but difficult to handle for biologist without computer skills. These ontologies constitute open worlds, and are expressed themselves by RDF triples (Resource Description Framework). Protégé offers vizualisation and reasoning capabilities for these ontologies (Gennari et al. 2003, Musen 2015). Our challenge is to combine the user friendliness of Xper3 with the expressive power of OWL (Web Ontology Language), the W3C standard for building ontologies. We therefore focused on analyzing the representation of the same taxonomic contents under Xper3 and under different models in OWL. After this critical analysis, we chose a description model that allows automatic export of SDD to OWL and can be easily enriched. We will present the results obtained and their validation on two knowledge bases, one on parasitic crustaceans (Sacculina) and the second on current ferns and fossils (Corvez and Grand 2014). The evolution of the Xper3 platform and the perspectives offered by this link with semantic web standards will be discussed.


Author(s):  
Alexander Felfernig ◽  
Gerhard Friedrich ◽  
Dietmar Jannach ◽  
Markus Stumptner ◽  
Markus Zanker
Keyword(s):  

Author(s):  
Floriano Scioscia ◽  
Michele Ruta ◽  
Giuseppe Loseto ◽  
Filippo Gramegna ◽  
Saverio Ieva ◽  
...  

The Semantic Web of Things (SWoT) aims to support smart semantics-enabled applications and services in pervasive contexts. Due to architectural and performance issues, most Semantic Web reasoners are often impractical to be ported: they are resource consuming and are basically designed for standard inference tasks on large ontologies. On the contrary, SWoT use cases generally require quick decision support through semantic matchmaking in resource-constrained environments. This paper describes Mini-ME (the Mini Matchmaking Engine), a mobile inference engine designed from the ground up for the SWoT. It supports Semantic Web technologies and implements both standard (subsumption, satisfiability, classification) and non-standard (abduction, contraction, covering, bonus, difference) inference services for moderately expressive knowledge bases. In addition to an architectural and functional description, usage scenarios and experimental performance evaluation are presented on PC (against other popular Semantic Web reasoners), smartphone and embedded single-board computer testbeds.


Author(s):  
Jakub Flotyński ◽  
Athanasios G. Malamos ◽  
Don Brutzman ◽  
Felix G. Hamza-Lup ◽  
Nicholas F. Polys ◽  
...  

The implementation of virtual and augmented reality environments on the web requires integration between 3D technologies and web technologies, which are increasingly focused on collaboration, annotation, and semantics. Thus, combining VR and AR with the semantics arises as a significant trend in the development of the web. The use of the Semantic Web may improve creation, representation, indexing, searching, and processing of 3D web content by linking the content with formal and expressive descriptions of its meaning. Although several semantic approaches have been developed for 3D content, they are not explicitly linked to the available well-established 3D technologies, cover a limited set of 3D components and properties, and do not combine domain-specific and 3D-specific semantics. In this chapter, the authors present the background, concepts, and development of the Semantic Web3D approach. It enables ontology-based representation of 3D content and introduces a novel framework to provide 3D structures in an RDF semantic-friendly format.


Author(s):  
Christopher Walton

In the introductory chapter of this book, we discussed the means by which knowledge can be made available on the Web. That is, the representation of the knowledge in a form by which it can be automatically processed by a computer. To recap, we identified two essential steps that were deemed necessary to achieve this task: 1. We discussed the need to agree on a suitable structure for the knowledge that we wish to represent. This is achieved through the construction of a semantic network, which defines the main concepts of the knowledge, and the relationships between these concepts. We presented an example network that contained the main concepts to differentiate between kinds of cameras. Our network is a conceptualization, or an abstract view of a small part of the world. A conceptualization is defined formally in an ontology, which is in essence a vocabulary for knowledge representation. 2. We discussed the construction of a knowledge base, which is a store of knowledge about a domain in machine-processable form; essentially a database of knowledge. A knowledge base is constructed through the classification of a body of information according to an ontology. The result will be a store of facts and rules that describe the domain. Our example described the classification of different camera features to form a knowledge base. The knowledge base is expressed formally in the language of the ontology over which it is defined. In this chapter we elaborate on these two steps to show how we can define ontologies and knowledge bases specifically for the Web. This will enable us to construct Semantic Web applications that make use of this knowledge. The chapter is devoted to a detailed explanation of the syntax and pragmatics of the RDF, RDFS, and OWL Semantic Web standards. The resource description framework (RDF) is an established standard for knowledge representation on the Web. Taken together with the associated RDF Schema (RDFS) standard, we have a language for representing simple ontologies and knowledge bases on the Web.


Author(s):  
Michel Simonet ◽  
Radja Messai ◽  
Gayo Diallo

Health data and knowledge had been structured through medical classifications and taxonomies long before ontologies had acquired their pivot status of the Semantic Web. Although there is no consensus on a common definition of an ontology, it is necessary to understand their main features to be able to use them in a pertinent and efficient manner for data mining purposes. This chapter introduces the basic notions about ontologies, presents a survey of their use in medicine and explores some related issues: knowledge bases, terminology, and information retrieval. It also addresses the issues of ontology design, ontology representation, and the possible interaction between data mining and ontologies.


Sign in / Sign up

Export Citation Format

Share Document