scholarly journals Graphs with maximal irregularity

Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1315-1322 ◽  
Author(s):  
Hosam Abdo ◽  
Nathann Cohen ◽  
Darko Dimitrov

Albertson [3] has defined the P irregularity of a simple undirected graph G = (V,E) as irr(G) =?uv?E |dG(u)- dG(v)|, where dG(u) denotes the degree of a vertex u ? V. Recently, this graph invariant gained interest in the chemical graph theory, where it occured in some bounds on the first and the second Zagreb index, and was named the third Zagreb index [12]. For general graphs with n vertices, Albertson has obtained an asymptotically tight upper bound on the irregularity of 4n3/27: Here, by exploiting a different approach than in [3], we show that for general graphs with n vertices the upper bound ?n/3? ?2n/3? (?2n/3? -1) is sharp. We also present lower bounds on the maximal irregularity of graphs with fixed minimal and/or maximal vertex degrees, and consider an approximate computation of the irregularity of a graph.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui

A topological index is a real number associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity, or biological activity. The concept of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials was established in chemical graph theory based on vertex degrees. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical networks. In this paper, we study carbon nanotube networks which are motivated by molecular structure of regular hexagonal lattice and also studied interconnection networks which are motivated by molecular structure of a chemical compound SiO4. We determine hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for some important class of carbon nanotube networks, dominating oxide network, dominating silicate network, and regular triangulene oxide network.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 810-819
Author(s):  
Juan Luis García Guirao ◽  
Muhammad Kamran Siddiqui ◽  
Asif Hussain

Abstract Networks play an important role in electrical and electronic engineering. It depends on what area of electrical and electronic engineering, for example there is a lot more abstract mathematics in communication theory and signal processing and networking etc. Networks involve nodes communicating with each other. Graph theory has found a considerable use in this area of research. A topological index is a real number associated with chemical constitution purporting for correlation of chemical networks with various physical properties, chemical reactivity. The concept of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index and Zagreb polynomials was established in chemical graph theory based on vertex degrees. In this paper, we extend this study to interconnection networks and derive analytical closed results of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, Zagreb polynomials and redefined Zagreb indices for block shift network (BSN − 1) and (BSN − 2), hierarchical hypercube (HHC − 1) and (HHC − 2).


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-Xia Li ◽  
Sarfaraz Ahmad ◽  
Iftikhar Ahmad

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In this paper, M-polynomial OKn and OPn networks are computed. The M-polynomial is rich in information about degree-based topological indices. By applying the basic rules of calculus on M-polynomials, the first and second Zagreb indices, modified second Zagreb index, general Randić index, inverse Randić index, symmetric division index, harmonic index, inverse sum index, and augmented Zagreb index are recovered.


Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 137 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Nadeem

A topological index is a number related to the atomic index that allows quantitative structure–action/property/toxicity connections. All the more vital topological indices correspond to certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth, of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices are valuable in the investigation of calming exercises of certain compound systems. In this paper, we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850064 ◽  
Author(s):  
Akbar Ali

In the chemical graph theory, graph invariants are usually referred to as topological indices. The second Zagreb index (denoted by [Formula: see text]) is one of the most studied topological indices. For [Formula: see text], let [Formula: see text] be the collection of all non-isomorphic connected graphs with [Formula: see text] vertices and [Formula: see text] edges (such graphs are known as tetracyclic graphs). Recently, Habibi et al. [Extremal tetracyclic graphs with respect to the first and second Zagreb indices, Trans. on Combin. 5(4) (2016) 35–55.] characterized the graph having maximum [Formula: see text] value among all members of the collection [Formula: see text]. In this short note, an alternative but relatively simple approach is used for characterizing the aforementioned graph.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai ◽  
Yaé Ulrich Gaba

Topological indices (TIs) are expressed by constant real numbers that reveal the structure of the graphs in QSAR/QSPR investigation. The reformulated second Zagreb index (RSZI) is such a novel TI having good correlations with various physical attributes, chemical reactivities, or biological activities/properties. The RSZI is defined as the sum of products of edge degrees of the adjacent edges, where the edge degree of an edge is taken to be the sum of vertex degrees of two end vertices of that edge with minus 2. In this study, the behaviour of RSZI under graph operations containing Cartesian product, join, composition, and corona product of two graphs has been established. We have also applied these results to compute RSZI for some important classes of molecular graphs and nanostructures.


2018 ◽  
Vol 16 (1) ◽  
pp. 1184-1188 ◽  
Author(s):  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Afshan Sadiq ◽  
Asia Rauf ◽  
Fida Hussain

AbstractIn chemical graph theory, a single numeric number related to a chemical structure is called a topological descriptor or topological index of a graph. In this paper, we compute analytically certain topological indices for H-Naphtalenic nanosheet like Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper-Zagreb index using edge partition technique. The first multiple Zagreb index and the second multiple Zagreb index of the nanosheet are also discussed in this paper.


2020 ◽  
Vol 39 (3) ◽  
pp. 776-791 ◽  
Author(s):  
Lkhagva Buyantogtokh ◽  
Batmend Horoldagva ◽  
Kinkar Chandra Das

2020 ◽  
Vol 43 (1) ◽  
pp. 219-228
Author(s):  
Ghulam Dustigeer ◽  
Haidar Ali ◽  
Muhammad Imran Khan ◽  
Yu-Ming Chu

AbstractChemical graph theory is a branch of graph theory in which a chemical compound is presented with a simple graph called a molecular graph. There are atomic bonds in the chemistry of the chemical atomic graph and edges. The graph is connected when there is at least one connection between its vertices. The number that describes the topology of the graph is called the topological index. Cheminformatics is a new subject which is a combination of chemistry, mathematics and information science. It studies quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. We evaluated the second multiplicative Zagreb index, first and second universal Zagreb indices, first and second hyper Zagreb indices, sum and product connectivity indices for the planar octahedron network, triangular prism network, hex planar octahedron network, and give these indices closed analytical formulas.


2020 ◽  
Vol 44 (1) ◽  
pp. 32-38
Author(s):  
Hani Shaker ◽  
Muhammad Imran ◽  
Wasim Sajjad

Abstract Chemical graph theory has become a prime gadget for mathematical chemistry due to its wide range of graph theoretical applications for solving molecular problems. A numerical quantity is named as topological index which explains the topological characteristics of a chemical graph. Recently face centered cubic lattice FCC(n) attracted large attention due to its prominent and distinguished properties. Mujahed and Nagy (2016, 2018) calculated the precise expression for Wiener index and hyper-Wiener index on rows of unit cells of FCC(n). In this paper, we present the ECI (eccentric-connectivity index), TCI (total-eccentricity index), CEI (connective eccentric index), and first eccentric Zagreb index of face centered cubic lattice.


Sign in / Sign up

Export Citation Format

Share Document