scholarly journals Computing Topological Indices and Polynomials for Line Graphs

Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 137 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Nadeem

A topological index is a number related to the atomic index that allows quantitative structure–action/property/toxicity connections. All the more vital topological indices correspond to certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth, of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices are valuable in the investigation of calming exercises of certain compound systems. In this paper, we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.

2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 384-409
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that describes the topology of molecular structure in mathematical chemistry. An important area of applied mathematics is the chemical reaction network theory. Real-world problems can be modeled using this theory. Due to its worldwide applications, chemical networks have attracted researchers since their foundation. In this report, some silicate and oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based topological indices named as the neighborhood Zagreb index ( M N ), the neighborhood version of the forgotten topological index ( F N ), the modified neighborhood version of the forgotten topological index ( F N ∗ ), the neighborhood version of the second Zagreb index ( M 2 ∗ ), and neighborhood version of the hyper Zagreb index ( H M N ) are obtained for the aforementioned networks. In addition, a comparison among all the indices is shown graphically.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 366 ◽  
Author(s):  
Jia-Bao Liu ◽  
Bahadur Ali ◽  
Muhammad Aslam Malik ◽  
Hafiz Muhammad Afzal Siddiqui ◽  
Muhammad Imran

A topological index is a numeric quantity that is closely related to the chemical constitution to establish the correlation of its chemical structure with chemical reactivity or physical properties. Miličević reformulated the original Zagreb indices in 2004, replacing vertex degrees by edge degrees. In this paper, we established the expressions for the reformulated Zagreb indices of some derived graphs such as a complement, line graph, subdivision graph, edge-semitotal graph, vertex-semitotal graph, total graph, and paraline graph of a graph.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


2020 ◽  
Vol 3 (2) ◽  
pp. 63
Author(s):  
Salma Kanwal ◽  
Mariam Imtiaz ◽  
Ayesha Manzoor ◽  
Nazeeran Idrees ◽  
Ammara Afzal

<p>Dutch windmill graph [1, 2] and denoted by <em>Dnm</em>. Order and size of Dutch windmill graph are (<em>n</em>−1)<em>m</em>+1 and mn respectively. In this paper, we computed certain topological indices and polynomials i.e. Zagreb polynomials, hyper Zagreb, Redefined Zagreb indices, modified first Zagreb, Reduced second Zagreb, Reduced Reciprocal Randi´c, 1st Gourava index, 2nd Gourava index, 1st hyper Gourava index, 2nd hyper Gourava index, Product connectivity Gourava index, Sum connectivity Gourava index, Forgotten index, Forgotten polynomials, <em>M</em>-polynomials and some topological indices in term of the <em>M</em>-polynomials i.e. 1st Zagreb index, 2nd Zagreb index, Modified 2nd Zagreb, Randi´c index, Reciprocal Randi´c index, Symmetric division, Harmonic index, Inverse Sum index, Augmented Zagreb index for the semitotal-point graph and line graph of semitotal-point graph for Dutch windmill graph.</p>


2018 ◽  
Vol 16 (1) ◽  
pp. 1200-1206 ◽  
Author(s):  
Zeeshan Saleem Mufti ◽  
Muhammad Faisal Nadeem ◽  
Wei Gao ◽  
Zaheer Ahmad

AbstractA topological index is a map from molecular structure to a real number. It is a graph invariant and also used to describe the physio-chemical properties of the molecular structures of certain compounds. In this paper, we have investigated a chemical structure of pentacene. Our paper reflects the work on the following indices:Rα, Mα, χα, ABC, GA, ABC4, GA5, PM1, PM2, M1(G, p)and M1(G, p) of the para-line graph of linear [n]-pentacene and multiple pentacene.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Nilanjan De ◽  
Sk. Md. Abu Nayeem ◽  
Anita Pal

The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph. This was introduced in 1972, in the same paper where the first and second Zagreb indices were introduced to study the structure-dependency of total [Formula: see text]-electron energy. But this topological index was not further studied till then. Very recently, Furtula and Gutman [A forgotten topological index,J. Math. Chem. 53(4) (2015) 1184–1190.] reinvestigated the index and named it “forgotten topological index” or “F-index”. In that paper, they present some basic properties of this index and showed that this index can enhance the physico-chemical applicability of Zagreb index. Here, we study the behavior of this index under several graph operations and apply our results to find the F-index of different chemically interesting molecular graphs and nanostructures.


2019 ◽  
Vol 27 (1) ◽  
pp. 45-56
Author(s):  
A. Bharali ◽  
A. Mahanta ◽  
J. Buragohain

Abstract Indulal and Balakrishnan (2016) have put forward the Indu-Bala product and based on this product four new operations are defined by the authors of this manuscript in the paper “Four new operations of graphs based on Indu-Bala product and the Zagreb indices”. In this paper we establish explicit formulas of the forgotten topological index and reduced second Zagreb index in connection with these new operations of graphs.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-Xia Li ◽  
Sarfaraz Ahmad ◽  
Iftikhar Ahmad

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In this paper, M-polynomial OKn and OPn networks are computed. The M-polynomial is rich in information about degree-based topological indices. By applying the basic rules of calculus on M-polynomials, the first and second Zagreb indices, modified second Zagreb index, general Randić index, inverse Randić index, symmetric division index, harmonic index, inverse sum index, and augmented Zagreb index are recovered.


2019 ◽  
Vol 27 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Abstract In this paper, four novel topological indices named as neighbourhood version of forgotten topological index (FN), modified neighbourhood version of Forgotten topological index (FN*), neighbourhood version of second Zagreb index (M2*) and neighbourhood version of hyper Zagreb index (HMN) are introduced. Here the relatively study depends on the structure-property regression analysis is made to test and compute the chemical applicability of these indices for the prediction of physicochemical properties of octane isomers. Also it is shown that these newly presented indices have well degeneracy property in comparison with other degree based topological indices. Some mathematical properties of these indices are also discussed here.


Sign in / Sign up

Export Citation Format

Share Document