scholarly journals A generalization of the m-topology on C(X) finer than the m-topology

Filomat ◽  
2017 ◽  
Vol 31 (8) ◽  
pp. 2509-2515
Author(s):  
F. Azarpanah ◽  
F. Manshoor ◽  
R. Mohamadian

It is well known that the component of the zero function in C(X) with the m-topology is the ideal C?(X). Given any ideal I ? C?(X), we are going to define a topology on C(X) namely the mI-topology, finer than the m-topology in which the component of 0 is exactly the ideal I and C(X) with this topology becomes a topological ring. We show that compact sets in C(X) with the mI-topology have empty interior if and only if X n T Z[I] is infinite. We also show that nonzero ideals are never compact, the ideal I may be locally compact in C(X) with the mI-topology and every Lindel?f ideal in this space is contained in C?(X). Finally, we give some relations between topological properties of the spaces X and Cm(X). For instance, we show that the set of units is dense in Cm(X) if and only if X is strongly zero-dimensional and we characterize the space X for which the set r(X) of regular elements of C(X) is dense in Cm(X).

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. J. Font ◽  
A. Miralles ◽  
M. Sanchis

We characterize compact sets of𝔼1endowed with the level convergence topologyτℓ. We also describe the completion(𝔼1̂,𝒰̂)of𝔼1with respect to its natural uniformity, that is, the pointwise uniformity𝒰, and show other topological properties of𝔼1̂, as separability. We apply these results to give an Arzela-Ascoli theorem for the space of(𝔼1,τℓ)-valued continuous functions on a locally compact topological space equipped with the compact-open topology.


1994 ◽  
Vol 17 (4) ◽  
pp. 687-692 ◽  
Author(s):  
Martin M. Kovár

In this paper we studyθ-regularity and its relations to other topological properties. We show that the concepts ofθ-regularity (Janković, 1985) and point paracompactness (Boyte, 1973) coincide. Regular, strongly locally compact or paracompact spaces areθ-regular. We discuss the problem when a (countably)θ-regular space is regular, strongly locally compact, compact, or paracompact. We also study some basic properties of subspaces of aθ-regular space. Some applications: A space is paracompact iff the space is countablyθ-regular and semiparacompact. A generalizedFσ-subspace of a paracompact space is paracompact iff the subspace is countablyθ-regular.


Author(s):  
Heneri A. M. Dzinotyiweyi

AbstractIn this paper we study commutative topological semigroups S admitting an absolutely continuous measure. When S is cancellative we show that S admits a weaker topology J with respect to which (S, J) is embeddable as a subsemigroup with non-empty interior in some locally compact topological group. As a consequence, we deduce certain results related to the existence of invariant measures on S and for a large class of locally compact topological semigroups S, we associate S with some useful topological subsemigroup of a locally compact group.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Awad A. Bakery

We introduced the ideal convergence of generalized difference sequence spaces combining an infinite matrix of complex numbers with respect toλ-sequences and the Musielak-Orlicz function overn-normed spaces. We also studied some topological properties and inclusion relations between these spaces.


2010 ◽  
Vol 20 (2) ◽  
pp. 107-126 ◽  
Author(s):  
ULRICH BERGER ◽  
JENS BLANCK ◽  
PETTER KRISTIAN KØBER

We present a method for constructing from a given domain representation of a space X with underlying domain D, a domain representation of a subspace of compact subsets of X where the underlying domain is the Plotkin powerdomain of D. We show that this operation is functorial over a category of domain representations with a natural choice of morphisms. We study the topological properties of the space of representable compact sets and isolate conditions under which all compact subsets of X are representable. Special attention is paid to admissible representations and representations of metric spaces.


1964 ◽  
Vol 4 (3) ◽  
pp. 273-286 ◽  
Author(s):  
J. H. Michael

An integral on a locally compact Hausdorff semigroup ς is a non-trivial, positive, linear functional μ on the space of continuous real-valued functions on ς with compact supports. If ς has the property: (A) for each pair of compact sets C, D of S, the set is compact; then, whenever and a ∈ S, the function fa defined by is also in . An integral μ on a locally compact semigroup S with the property (A) is said to be right invariant if for all j ∈ and all a ∈ S.


2005 ◽  
Vol 16 (07) ◽  
pp. 693-755 ◽  
Author(s):  
PAUL S. MUHLY ◽  
MARK TOMFORDE

Topological quivers are generalizations of directed graphs in which the sets of vertices and edges are locally compact Hausdorff spaces. Associated to such a topological quiver [Formula: see text] is a C*-correspondence, and from this correspondence one may construct a Cuntz–Pimsner algebra [Formula: see text]. In this paper we develop the general theory of topological quiver C*-algebras and show how certain C*-algebras found in the literature may be viewed from this general perspective. In particular, we show that C*-algebras of topological quivers generalize the well-studied class of graph C*-algebras and in analogy with that theory much of the operator algebra structure of [Formula: see text] can be determined from [Formula: see text]. We also show that many fundamental results from the theory of graph C*-algebras have natural analogues in the context of topological quivers (often with more involved proofs). These include the gauge-invariant uniqueness theorem, the Cuntz–Krieger uniqueness theorem, descriptions of the ideal structure, and conditions for simplicity.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250014 ◽  
Author(s):  
PAPIYA BHATTACHARJEE

This paper studies algebraic frames L and the set Min (L) of minimal prime elements of L. We will endow the set Min (L) with two well-known topologies, known as the Hull-kernel (or Zariski) topology and the inverse topology, and discuss several properties of these two spaces. It will be shown that Min (L) endowed with the Hull-kernel topology is a zero-dimensional, Hausdorff space; whereas, Min (L) endowed with the inverse topology is a T1, compact space. The main goal will be to find conditions on L for the spaces Min (L) and Min (L)-1 to have various topological properties; for example, compact, locally compact, Hausdorff, zero-dimensional, and extremally disconnected. We will also discuss when the two topological spaces are Boolean and Stone spaces.


Sign in / Sign up

Export Citation Format

Share Document