scholarly journals Flexural fatigue characteristics of steel fiber reinforced recycled aggregate concrete (SFRRAC)

Author(s):  
M. Heeralal ◽  
Rathish Kumar ◽  
Y.V. Rao

This research work is aimed at investigating the flexural fatigue behavior of Steel Fiber Reinforced Recycled Aggregate Concrete (SFRRAC). This study gains importance in view of the wide potential for demolished concrete to serve as a source of quality aggregate feed stock in a variety of structural and non-structural applications. This is a continuation of a series of investigations being conducted aimed at optimizing the utilization of recycled aggregate concrete in rigid pavements. A total of 72 standard flexure specimens of 100mm x 100mm x 450mm were cast and tested for flexure under both static and fatigue loading. The parameters of the investigation included the different replacements of recycled aggregate in natural aggregate, presence of steel fiber and different stress levels. The study showed that the recycled aggregates can be used in rigid pavements also and the inclusion of fibers can benefit the fatigue performance of recycled aggregate concrete.

2014 ◽  
Vol 46 ◽  
pp. 65-72 ◽  
Author(s):  
Jodilson Amorim Carneiro ◽  
Paulo Roberto Lopes Lima ◽  
Mônica Batista Leite ◽  
Romildo Dias Toledo Filho

2019 ◽  
Vol 26 (3) ◽  
pp. 37-42
Author(s):  
Ashtar S. Al-Luhybi

In the building process, the recycling of aggregates arising from building and demolition debris is one of the best alternatives to maintain the environment and the areas needed to bury these debris. It also helps to preserve natural concrete sources from depletion efficiently. The use of recycled aggregates in new concrete manufacturing, however, leads to a decrease in concrete\\\’s strength characteristics. This reduction rises with the rise in the percentage of recycled aggregates used in concrete, which has caused many researchers to undertake many researches on how to enhance the characteristics of recycled aggregate-containing concrete. This paper presents several studies that examined the effect of adding steel fiber to improve the properties of concrete containing a coarse recycled aggregate.


2018 ◽  
Vol 20 (2) ◽  
pp. 745-755 ◽  
Author(s):  
Rakul Bharatwaj Ramesh ◽  
Olivia Mirza ◽  
Won‐Hee Kang

2018 ◽  
Vol 16 (6) ◽  
pp. 959-972 ◽  
Author(s):  
Sepani Senaratne ◽  
Olivia Mirza ◽  
Gregory Lambrousis ◽  
Alessandro Fernandez-Soncini

PurposeThe use of recycled aggregates (RA) has been explored to lead to a more sustainable future. The paper investigates on a sustainable concrete mix incorporating steel fibres (SF) and RA to provide an alternative to traditional natural aggregate concrete for structural applications. This paper aims to explore the feasibility of combining RA and SF in structural applications in terms of strength, cost and industry perspectives.Design/methodology/approachA mixed research approach is established with two phases. Phase 1 aims to identify an optimum material combination that satisfies the structural strength requirements and to identify the costs in its optimum combination. Phase 2 involves qualitative interviews with key industry parties to explore their perspective and identify various enablers and barriers for this material.FindingsThe optimum combination of 30 per cent RA replacement and 0.3 SF volume content has been identified through laboratory testing. It was noted that there would be a direct additional cost because of SF addition. However, when other benefits such as reduction in transportation costs and landfill dumping fees were considered, an overall cost saving could be achieved. Consequently, the key industry practitioners’ perspectives for this material have been gathered through qualitative interviews. Several enablers and barriers were identified through these interviews.Originality/valueEven though, there are various research attempts on improving RA for structural purpose by adding different additives, a holistic study that incorporate cost effects and the industry perspectives was lacking and is addressed in this current study. In particular, industry perspectives lead to refocus research directions and get closer to the realisation of a sustainable construction industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Tan ◽  
Chenxu Zhou ◽  
Jinzhi Zhou

Steel fiber recycled aggregate concrete (SFRAC) is mainly used in roads, bridges, and railways that are subjected to bear wheel load. This paper presents a comparative experimental study on the flexural fatigue behavior of the SFRAC, the natural aggregate concrete (NAC), and the recycled aggregate concrete (RAC). The results show that, with the use of 1.0% volume fraction steel fiber, the flexural strength of SFRAC exceeds the flexural strength of NAC (around 0.3%), and the fatigue lives of RAC have been found to be lower by 19.9% and 53.4% compared to SFRAC at stress levels S = 0.9 and S = 0.7. The fatigue strain of SFRAC follows the three-stage law, and the fatigue strain of SFRAC develops more slowly than that of RAC at the same stress level. Two-parameter Weibull distribution is fitted to the test data to generate fatigue models at different survival probabilities, and fatigue life can be accurately predicted using the developed model. Therefore, it is feasible to replace the natural concrete with the recycled aggregate concrete with appropriate steel fiber content in some aspects, which is of great significance to green development.


2019 ◽  
Vol 19 (4) ◽  
pp. 594-613 ◽  
Author(s):  
Emmanuel Ejiofor Anike ◽  
Messaoud Saidani ◽  
Eshmaiel Ganjian ◽  
Mark Tyrer ◽  
Adegoke Omotayo Olubanwo

Purpose This paper aims to review the effect of using recycled aggregates (RA) on the properties of recycled aggregate concrete (RAC) following the steady rise in global demand for concrete and the large generation of construction and demolition waste. Design/methodology/approach This study reviewed relevant literature of research work carried out by previous researchers, leading to a deeper understanding of the properties of both RA and RAC. The properties of RA and RAC reported in the various studies were then compared to their corresponding natural aggregate (NA) and natural aggregate concrete, as well as the specifications provided in different codes of practice. In addition, the mix design methods appropriate to RAC and the cost implication of using RA were reviewed. Findings Findings show that the contribution of RA to strength appears inferior in comparison to NA. The shortcoming is attributed to the mortar attached to the RA, which raises its water absorption capacity and lowers its density relative to those of NA. However, it has been reported that the use of regulated quantity of RA, new mixing and proportioning methods, the addition of admixtures and strengthening materials such as steel fibres, can improve both mechanical and durability properties of RAC. Cost evaluation also showed that some savings can be realized by using RA instead of NA. Originality/value This research serves as a guide for future works and suggests that the use of RA as aggregate in new concrete is technically possible, depending on the mix design method adopted.


Sign in / Sign up

Export Citation Format

Share Document