scholarly journals Investigation of the effect of organic solvents on kinetic parameters in metal catalyzed reactions

2000 ◽  
Vol 65 (3) ◽  
pp. 201-206
Author(s):  
Ljiljana Trifkovic ◽  
Gordana Milovanovic

The effects of acetone and acetonitrile on the kinetic parameters of azorubin S oxidation by hydrogen peroxide catalyzed by manganese(II), pyrocatechol violet oxidation by hydrogen peroxide catalyzed by copper(II), and carminic acid oxidation by hydrogen peroxide catalyzed by copper(II) and activated by bifenox, were examined. It was established that the examined solvents exhibit various effects on the kinetic parameters of the above said reactions. In all instances a change in the solvent concentration affects both the enthalpy and the entropy contributions to the free activation energy during the transition of the system into the active state, as well as the constant of the active complex formed at this point.

2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2021 ◽  
Vol 17 ◽  
Author(s):  
Austin Pounder ◽  
Angel Ho ◽  
Matthew Macleod ◽  
William Tam

: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.


2021 ◽  
pp. 153104
Author(s):  
Francisco Foubelo ◽  
Carmen Nájera ◽  
José M. Sansano ◽  
Miguel Yus

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 502
Author(s):  
Agata J. Pacuła-Miszewska ◽  
Anna Laskowska ◽  
Anna Kmieciak ◽  
Mariola Zielińska-Błajet ◽  
Marek P. Krzemiński ◽  
...  

A series of new bidentate N,S-ligands—aziridines containing a para-substituted phenyl sulfide group—was synthesized and evaluated in the Pd-catalyzed Tsuji–Trost reaction and addition of diethylzinc and phenylethynylzinc to benzaldehyde. A high enantiomeric ratio for the addition reactions (up to 94.2:5.8) was obtained using the aziridine ligand bearing a p-nitro phenyl sulfide group. Collected results reveal a specific electronic effect that, by the presence of particular electron-donating or electron-withdrawing groups in the PhS- moiety, influences the σ-donor–metal binding and the enantioselectivity of the catalyzed reactions.


ChemInform ◽  
2010 ◽  
Vol 41 (42) ◽  
Author(s):  
Takumi Abe ◽  
Hiroyuki Takeda ◽  
Yumi Takahashi ◽  
Yoshihisa Miwa ◽  
Koji Yamada ◽  
...  

1986 ◽  
Vol 34 (12) ◽  
pp. 1667-1672 ◽  
Author(s):  
F Gallyas ◽  
J R Wolff

Physical developers can increase the visibility of end products of certain histochemical reactions, such as oxidative polymerization of diaminobenzidine and selective binding of complex silver iodide ions to Alzheimer's neurofibrillary changes. Unfortunately, this intensification by silver coating is generally superimposed on a nonspecific staining originating from the argyrophil III reaction, which also takes place when tissue sections are treated with physical developers. The present study reveals that the argyrophil III reaction can be suppressed when tissue sections are treated with certain metal ions and hydrogen peroxide before they are transferred to the physical developer. The selective intensification of Alzheimer's neurofibrillary changes requires a pre-treatment with lanthanum nitrate (10 mM/liter) and 3% hydrogen peroxide for 1 hr. The diaminobenzidine reaction can be selectively intensified when physical development is preceded by consecutive treatments with copper sulfate (10 mM/liter, pH 5, 10 min) and hydrogen peroxide (3%, pH 7, 10 min). In peroxidase histochemistry, this high-grade intensification may help to increase specificity and reduce the threshold of detectability in tracing neurons with horseradish peroxidase or in immunohistochemistry when the peroxidase-antiperoxidase method is used.


2004 ◽  
pp. 3409 ◽  
Author(s):  
Peter M. Maitlis ◽  
Anthony Haynes ◽  
Brian R. James ◽  
Marta Catellani ◽  
Gian Paolo Chiusoli

Sign in / Sign up

Export Citation Format

Share Document