scholarly journals A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

2014 ◽  
Vol 29 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Abd-Elmoniem Elzain

Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ? 8) Bq/m3 in Medani to 41 ? 9 Bq/m3 in Wad Almahi, with an average of 49 ? 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the ?normal? background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


2021 ◽  
Vol 19 (12) ◽  
pp. 06-10
Author(s):  
Hussam Najem Abood ◽  
Ahmed Abbas Mohamed

Indoor radon/thoron concentration has been determined in some dwellings of Suq Alshouk district in Thiqar Governorate southern of Iraq, using LR-115 type II and CR-39 (SSNTDs). In this work the indoor radon/thoron concentration varies from (8-73) Bq m-3 for radon with an average 35±2Bq m-3, and ranges (1- 47) Bq m-3 for thoron with an average16±2Bq m-3. The average annual effective dose due to radon and thoron varies from 0.43-3.38m Sv y-1 with average value 1.43±0.11 mSv y-1.


Author(s):  
Emilija Fidanchevski ◽  
Biljana Angjusheva ◽  
Vojo Jovanov ◽  
Pece Murtanovski ◽  
Ljubica Vladiceska ◽  
...  

AbstractHuge quantities of fly ash and bottom ash are generated from thermal power plants and it presents great concern for country, mainly due to the environmental effects. In this study, fly ashes and bottom ash were characterized from technical and radiological aspects. Health effect due to the activity of radionuclides 226Ra, 232Th and 40K was estimated via radium equivalent activity (Raeq), external hazards index (Hex), the external absorbed dose rate (D) and annual effective dose rate (EDR). The specific surface area (40.25 m2 g−1), particle density (1.88 g cm−3) and LOI (23.49%) were typical for bottom ash. Siliceous fly ash contained 32% reactive silica. The annual effective dose rate for all ashes is ≤ 0.2 mSv y−1. Both, fly ash and bottom ash present potential secondary raw materials to be used for building purposes as result of their technological and radiological assessment.


Author(s):  
S. P. Gautam ◽  
A. Silwal ◽  
S. Acharya ◽  
B. Aryal

Measurement of outdoor natural background radiation doses at different locations of Pokhara city, Nepal was carried out using GCA-07W, Nuclear Regulatory Commission (NRC) certified Geiger Muller (GM) detector. From the measurements, the least value of background radiation dose rate was found to be 0.26 ± 0.08 μSv/hr for Mahendra Cave area, and the highest value of dose rate was found to be 0.65 ± 0.12 μSv/hr for Prithvi Narayan Campus. The average annual effective dose rate of Pokhara city was found to be 0.56 ± 0.12 mSv/yr ranging from 0.31 ± 0.09 mSv/yr to 0.80 ± 0.14 mSv/yr. The radiation levels in Pokhara, the most populated city of the western development region of Nepal, were found to be within the secure limit for areas of the normal background recommended by the International Commission on Radiological Protection (ICRP) (1 mSv/yr). Further, the current result was compared with the previous study of annual effective dose rate measured in Kathmandu city. Comparable value of the average annual effective dose rate in Pokhara and Kathmandu was obtained.


2019 ◽  
Vol 14 (30) ◽  
pp. 24-32 ◽  
Author(s):  
Shafik S. Shafik

In this study, the activity concentrations of indoor radon, thoronand their progeny have been measured in air for 61 differentlocations of Al-Maddan city using twin cup dosimeter. Furthermore,some useful parameters concerning the health hazards have beenestimated; working level month (WLM), annual effective dose (Eff),and excess lung cancer per million person per year (ELC).The resultsshow that the values of radon gas levels in the investigated districtsvaried from 56.28 to 194.43Bq/m3with an overall average value132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average0.740, respectively. The value of Eff and ELC have been found tovary from 1.420 to 4.918 mSv/y with an overall average value3.354mSv/y, and 852 to 2951 with an overall average value 2013,respectively. For thoron gas only, the results showed that the thoronactivity concentration varied from 15.05 to 172.40 Bq/m3 with anoverall average 76.48 Bq/m3, and 0.021to 0.240for WLM with anoverall average 0.106, respectively. The values of Eff and ELC havebeen found to vary from 0.256 to 2.94 mSv/y with an overallaverage1.30 mSv/y and from 57 to 652 with an overall average of298, respectively. The concentration of radon progeny varied from59.44 to 301.39 Bq/m3 with an overall average 157.62 Bq/m3. Theresults illustrated that there is a large variation in the values of themeasured concentrations. This is due to the wide variation in theconstruction of the houses in Al-Madaan city. However, allinvestigated locations have radon concentration below the actionlevel (200-300Bq/m3) that recommended byICRP. Therefore, there isno health hazard of radon in the region of Al-Madaan city wheremeasurements have been performed.


2018 ◽  
Vol 786 ◽  
pp. 393-399
Author(s):  
Heba M. Badran

The main objective of this study is to assess the health hazard due to the indoor radon. CR-39 as time-integrated passive solid-state nuclear track detectors (SSNTDs) were used in the indoor radon measurements of Najran City, Saudi Arabia. CR-39 detectors were distributed in dwellings of different places of the city. The detectors were exposed in the dwellings for two months and then etched in NaOH 6.25 N solution at 70 ±1°C for 5 h. This study revealed that the radon concentration in the dwellings ranged from 15.03±1.9 to 70.48±3.3 Bq m-3 with an average of 34.00±14.0 Bq m-3. Comparison of indoor radon concentration measurements in the different floors showed that the radon concentration in ground floors was slightly higher than that in first floors. Results showed that there is no significant health risk from indoor radon concentration and annual effective dose in the study region.


Sign in / Sign up

Export Citation Format

Share Document