scholarly journals Industrial heating system creating given temperature distribution

2008 ◽  
Vol 5 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Ilona Iatcheva ◽  
Ilonka Lilianova ◽  
Hristophor Tahrilov ◽  
Rumena Stancheva

The aim of the work is precise coupled electromagnetic-temperature field analysis using the finite element method of an induction heating system and creation of adequate field models at chosen control points. The obtained models have been applied in an optimization task, concerning special requirements for temperature distribution in the heated detail. The field analysis problem was solved as nonlinear, transient and axisymmetrical. The field models used in the optimization problem were based on the Response surface method and Design of experiment. The presented example refers to a real induction heating system. Heated details after plastic deformation and hardening are used for producing farm instruments.

2009 ◽  
Vol 152-153 ◽  
pp. 407-410
Author(s):  
Ilona Ilieva Iatcheva ◽  
Rumena Stancheva ◽  
Hristofor Tahrilov ◽  
Ilonka Lilianova

The aim of the work is precise coupled –electromagnetic and temperature field analysis of an induction heating system by finite element method. Presented example is referred to real induction heating system. The problem was solved as nonlinear, transient and axisymmetrical. The numerical model of the coupled fields is based on the finite element method and electromagnetic and temperature distributions have been obtained using COMSOL 3.3 software package.


2013 ◽  
Vol 664 ◽  
pp. 853-858
Author(s):  
Chun Hui Situ ◽  
Qing Qing Luo ◽  
Tao Mei ◽  
Jiang Zhuang

Thermoforming machine plays a very important role in industrial production, food packaging and other industries. In traditional thermoforming machine, highest temperature often appears in the center of the heating zone, and gradually reduces from the middle to both sides. It results in uneven heating, reducing the rate of finished products and a waste of resources. According to the finite element method, this article established the thermal field model of matrix heating system in thermoforming machine and simulated the temperature distribution of plastic in heating system under the conditions of “uniform heating” and “non-uniform heating” separately. It found that under the condition of “non-uniform heating”, the temperature distribution appeared uniform. The temperature of main region to be heated appeared approximately linear distribution, with the variation range of less than 5 °C, resulted in better effect than that under the condition of “uniform heating”


2015 ◽  
Vol 21 (3) ◽  
pp. 244-249 ◽  
Author(s):  
Huy-Tien Bui ◽  
Sheng-Jye Hwang

Purpose – The purpose of this paper is to develop a barrel heating system using induction heating instead of resistance heating. And, a working coil for the induction heating system was designed so that the barrel has uniform temperature distribution. Design/methodology/approach – A coupling design combining the pitch of turns of working coil with the magnetic flux concentrators in the barrel induction heating system was developed to achieve uniform temperature distribution which was approximately the same as temperature uniformity obtained from that of resistance heating system. Findings – In contrast to resistance heating method, induction heating is more efficient because the heating is directly applied on the work-piece. Its heating rate is higher than that of resistance heating method. However, the uneven temperature distribution in the barrel is the main disadvantage of the induction heating system. But, with proper design of adjusting the pitch of turns at the center of working coil and adding magnetic flux concentrators at areas with lower magnetic flux, the barrel heating system via induction can achieve temperature distribution uniformity. Originality/value – Under proper design of working coil, the barrel heating system by induction method can achieve the same uniform temperature distribution as the barrel heated by resistance method, and could be practically used in an injection molding machine.


2015 ◽  
Vol 764-765 ◽  
pp. 249-253
Author(s):  
Huy Tien Bui ◽  
Sheng Jye Hwang

A barrel heating system will be developed by using induction heating instead of current resistance heating. The experiment results showed the induction heating system can change successfully the current resistance heating system in heated the barrel of injection molding machine. A working coil coupled with magnetic concentrator bars was also considered. Finally, the uniformity of temperature distribution is compared between two barrel heating systems.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2018 ◽  
Vol 99 (1-4) ◽  
pp. 583-593 ◽  
Author(s):  
Dong Kyu Kim ◽  
Young Yun Woo ◽  
Kwang Soo Park ◽  
Woo Jeong Sim ◽  
Young Hoon Moon

1995 ◽  
Vol 31 (3) ◽  
pp. 2158-2161 ◽  
Author(s):  
Ghun-Deok Suh ◽  
Hong-Bae Lee ◽  
Song-Yop Hahn ◽  
Tae-Kyung Chung ◽  
Il-Han Park

Sign in / Sign up

Export Citation Format

Share Document