scholarly journals Modeling and control of temperature of heat-calibration wind tunnel

2012 ◽  
Vol 16 (5) ◽  
pp. 1433-1436 ◽  
Author(s):  
Yunhua Li ◽  
Fengjian Teng ◽  
Chaozhi Cai

This paper investigates the temperature control of the heat air-flow wind tunnel for sensor temperature-calibration and heat strength experiment. Firstly, a mathematical model was established to describe the dynamic characteristics of the fuel supplying system based on a variable frequency driving pump. Then, based on the classical cascade control, an improved control law with the Smith predictive estimate and the fuzzy proportional-integral-derivative was proposed. The simulation result shows that the control effect of the proposed control strategy is better than the ordinary proportional-integral-derivative cascade control strategy.

2020 ◽  
Vol 53 (2) ◽  
pp. 14028-14033
Author(s):  
Micha S. Obergfell ◽  
Steven X. Ding ◽  
Frank Wobbe ◽  
Christoph-Marian Goletz ◽  
Michael Folkers ◽  
...  

2014 ◽  
Vol 26 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Pinpin Lu ◽  
Xiaojian Zhang ◽  
Chiqian Zhang ◽  
Zhangbin Niu ◽  
Shuguang Xie ◽  
...  

2007 ◽  
Vol 31 (1) ◽  
pp. 127-141
Author(s):  
Yonghong Tan ◽  
Xinlong Zhao

A hysteretic operator is proposed to set up an expanded input space so as to transform the multi-valued mapping of hysteresis to a one-to-one mapping so that the neural networks can be applied to model of the behavior of hysteresis. Based on the proposed neural modeling strategy for hysteresis, a pseudo control scheme is developed to handle the control of nonlinear dynamic systems with hysteresis. A neural estimator is constructed to predict the system residual so that it avoids constructing the inverse model of hysteresis. Thus, the control strategy can be used for the case where the output of hysteresis is unmeasurable directly. Then, the corresponding adaptive control strategy is presented. The application of the novel modeling approach to hysteresis in a piezoelectric actuator is illustrated. Then a numerical example of using the proposed control strategy for a nonlinear system with hysteresis is presented.


2013 ◽  
Vol 433-435 ◽  
pp. 1091-1098
Author(s):  
Wei Bo Yu ◽  
Cui Yuan Feng ◽  
Ting Ting Yang ◽  
Hong Jun Li

The air precooling system heat exchange process is a complex control system with features such as: nonlinear, lag and random interference. So choose Generalized Predictive Control Algorithm that has low model dependence, good robustness and control effect, as well as easy to implement. But due to the large amount of calculation of traditional generalized predictive control and can't juggle quickness and overshoot problem, an improved generalized predictive control algorithm is proposed, then carry out the MATLAB simulation, the experimental results show that the algorithm can not only greatly reduce the amount of computation, but also can restrain the overshoot and its rapidity.


Author(s):  
Fawzi Senani

<span lang="EN-US">The paper presents the complete modeling and control strategy of variable speed wind turbine system (WTS) driven doubly fed induction generators (DFIG). A back-to-back converter is employed for the power conversion exchanged between DFIG and grid. The wind turbine is operated at the maximum power point tracking (MPPT) mode its maximum efficiency. Direct power control (DPC) based on selecting of the appropriate rotor voltage vectors and the errors of the active and reactive power, the control strategy of rotor side converter combines the technique of MPPT and direct power control. In the control system of the grid side converter the direct power control has been used to maintain a constant DC-Link voltage, and the reactive power is set to 0. Simulations results using MATLAB/SIMULINK are presented and discussed on a 1.5MW DFIG wind generation system demonstrate the effectiveness of the proposed control.</span>


Sign in / Sign up

Export Citation Format

Share Document