scholarly journals Fractal aggregation and breakup of fine particles

2016 ◽  
Vol 20 (3) ◽  
pp. 797-801 ◽  
Author(s):  
Bingru Li ◽  
Feifeng Cao ◽  
Zhanhong Wan ◽  
Zhigang Feng ◽  
Honghao Zheng

Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12531-12531
Author(s):  
Junjie Chen ◽  
Xuhui Gao ◽  
Longfei Yan ◽  
Deguang Xu

Retraction of ‘Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production’ by Junjie Chen et al., RSC Adv., 2018, 8, 25183–25200, DOI: 10.1039/C8RA04440F.


2018 ◽  
Vol 35 (9) ◽  
pp. 098101
Author(s):  
Shu-Zhe Mei ◽  
Quan Wang ◽  
Mei-Lan Hao ◽  
Jian-Kai Xu ◽  
Hong-Ling Xiao ◽  
...  

2010 ◽  
Author(s):  
Cynthia L. Rakowski ◽  
William A. Perkins ◽  
Marshall C. Richmond ◽  
John A. Serkowski

2002 ◽  
Vol 2 (5) ◽  
pp. 1599-1633 ◽  
Author(s):  
M. Seifert ◽  
J. Ström ◽  
R. Krejci ◽  
A. Minikin ◽  
A. Petzold ◽  
...  

Abstract. In situ observations of aerosol particles contained in cirrus crystals are presented and compared to interstitial aerosol size distributions (non-activated particles in between the cirrus crystals). The observations were conducted in cirrus clouds in the Southern and Northern Hemisphere mid-latitudes during the INCA project. The first campaign in March and April 2000 was performed from Punta Arenas, Chile (54° S) in pristine air. The second campaign in September and October 2000 was performed from Prestwick, Scotland (53° N) in the vicinity of the North Atlantic flight corridor. Size distribution measurements of crystal residuals (particles remaining after evaporation of the crystals) show that small aerosol particles (Dp < 0.1µm) dominate the number density of residuals. The crystal residual size distributions were significantly different in the two campaigns. On average the residual size distributions were shifted towards larger sizes in the Southern Hemisphere. For a given integral residual number density, the calculated particle volume was on average three times larger in the Southern Hemisphere. This may be of significance to the vertical redistribution of aerosol mass by clouds in the tropopause region. In both campaigns the mean residual size increased with increasing crystal number density. The observations of ambient aerosol particles were consistent with the expected higher pollution level in the Northern Hemisphere. The fraction of residual particles only contributes to approximately a percent or less of the total number of particles, which is the sum of the residual and interstitial particles.


Sign in / Sign up

Export Citation Format

Share Document